Discovery may lead to mitochndria syndrome treatment

September 22, 2011 By Krishna Ramanujan, Cornell University
This figure shows the protein encoded by the newly identified human gene, DHFRL1, localizing to mitochondria. The blue stain illuminates the cell nucleus, and the green fluoresce shows the co-localization of DHFRL1 and a mitochondrial marker.

Mitochondrial depletion syndrome accounts for about 11 percent of the cases of children born with common myopathies and a more mild form of the syndrome affecting adults. A new finding by Cornell researchers may lead to a nutrition-based treatment with B vitamins.

The syndrome can cause , muscle weakness and myopathy (a muscular disease in which lose function) and can be fatal in children; it can generate exercise intolerance, fatigue, anemia and neuropathy (disorders due to damaged nerves of the parts of the nervous system outside the brain and spinal cord) in adults.

Mitochondria are known for supplying cells with energy, along with many ranging from cell growth and signaling to cell death. Though the syndrome is commonly associated with genetic mutations, the details have been largely unknown.

Now, Cornell researchers have identified a new human gene, called DHFRL1, and an associated pathway that is required for faithful replication and stability of , according to the study, which was published Aug. 26 in the .

"We have found a new pathway, which when disrupted, may explain mitochondrial depletion syndrome in a subset of adults and children," said Patrick Stover, professor and director in the Division of Nutritional Sciences and the senior author of the study. Donald Anderson, a former graduate student in Stover's lab and now a postdoctoral associate at the University of Texas Southwestern, is the paper's lead author.

The study describes a pathway in which the DHFRL1 gene and two other genes, SHMT2 and TYMS, express proteins that lead to the synthesis of dTMP, a nucleotide that serves as a building block of mitochondrial DNA. The pathway is needed for faithful replication of mitochondrial DNA and leads to genomic stability.

When Stover and colleagues knocked out the DHFRL1 gene, the pathway was disrupted, leading to mitochondrial DNA instability, which is the hallmark of the depletion syndrome.

The vitamin folate (naturally occurring B-9, also known as folic acid, in its synthetic form) is essential to the pathway's proper functioning.

In the United States, food is fortified with folic acid, but for individuals who have that lead to folate deficiency or an inability to use folate properly, vitamin B-9 supplementation could improve their health, Stover said.

"Pathologies related to B vitamin folate are common in the United States and worldwide, and this study sheds new light on the role of folate and in the body and has implications for treating mitochondrial depletion syndrome," said Stover.

Related Stories

Recommended for you

DNA gets away: Scientists catch the rogue molecule that can trigger autoimmunity

February 22, 2018
A research team has discovered the process - and filmed the actual moment - that can change the body's response to a dying cell. Importantly, what they call the 'Great Escape' moment may one day prove to be the crucial trigger ...

Low-calorie diet enhances intestinal regeneration after injury

February 22, 2018
Dramatic calorie restriction, diets reduced by 40 percent of a normal calorie total, have long been known to extend health span, the duration of disease-free aging, in animal studies, and even to extend life span in most ...

Fertility breakthrough: New research could extend egg health with age

February 22, 2018
Women have been told for years that if they don't have children before their mid-30s, they may not be able to. But a new study from Princeton University's Coleen Murphy has identified a drug that extends egg viability in ...

Artificial intelligence quickly and accurately diagnoses eye diseases and pneumonia

February 22, 2018
Using artificial intelligence and machine learning techniques, researchers at Shiley Eye Institute at UC San Diego Health and University of California San Diego School of Medicine, with colleagues in China, Germany and Texas, ...

Gut microbes protect against sepsis—mouse study

February 22, 2018
Sepsis occurs when the body's response to the spread of bacteria or toxins to the bloodstream damages tissues and organs. The fight against sepsis could get a helping hand from a surprising source: gut bacteria. Researchers ...

Breakthrough could lead to better drugs to tackle diabetes and obesity

February 22, 2018
Breakthrough research at Monash University has shown how different areas of major diabetes and obesity drug targets can be 'activated', guiding future drug development and better treatment of diseases.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.