Large study finds genetic 'overlap' between schizophrenia, bipolar disorder

September 21, 2011, University of California - Los Angeles

Knowledge about the biological origin of diseases like schizophrenia, bipolar disorder and other psychiatric conditions is critical to improving diagnosis and treatment.

In an effort to push the field forward, three UCLA researchers, along with scientists from more than 20 countries, have been taking part in one of the largest collaborative efforts in psychiatry — a genome-wide study involving more than 50,000 study participants aimed at identifying which genetic variants make people susceptible to psychiatric disease.

This collaborative, the Psychiatric Genome-Wide Association Study Consortium (PGC), now reports in the current online edition of the journal Nature Genetics that it has discovered that common genetic variants contribute to a person's risk of and .

The PGC's studies provide new molecular evidence that 11 regions on the genome are strongly associated with these diseases, including six regions not previously observed. The researchers also found that several of these DNA variations contribute to both diseases.

The findings, the researchers say, represent a significant advance in understanding the causes of these chronic, severe and debilitating disorders.

The UCLA researchers who contributed to the schizophrenia study are Roel A. Ophoff, a professor of psychiatry and human genetics and one of the founding principal investigators of the schizophrenia portion of the study; Dr. Nelson Freimer, a professor of psychiatry and director of the Center for Neurobehavioral Genetics at the Semel Institute for Neuroscience and Human Behavior at UCLA; and Rita Cantor, a professor of and human genetics.

Schizophrenia and bipolar disorder are common and often devastating brain disorders. Some of the most prominent symptoms of schizophrenia are persistent delusions, hallucinations and cognitive problems. Bipolar disorder is characterized by severe, episodic mood swings. Both affect about 1 percent of the world's population and usually strike in late adolescence or early adulthood.

Despite the availability of treatments, these illnesses are usually chronic, and patients' response to treatment is often incomplete, leading to prolonged disability and personal suffering. Family history, which reflects genetic inheritance, is a strong risk factor for both schizophrenia and bipolar disorder, and it has generally been assumed that dozens of genes, along with environmental factors, contribute to disease risk.

In the schizophrenia study, a total of seven locations on the genome were implicated in the disease, five of which had not been identified before. When similar data from the bipolar disorder study, which ran concurrently, were combined with results from the schizophrenia study, three gene locations were identified that proved to be involved in both disorders, suggesting a "genetic overlap" between schizophrenia and bipolar disorder.

"Genetic factors play an important role in the susceptibility to develop schizophrenia," Ophoff said, "but identifying these genetic factors has been very difficult. We know that schizophrenia is not caused by a single gene that explains everything but an interplay of many genetic and non-genetic factors."

At the same time, he said, the disease itself is not uniform but manifests itself in different ways; currently, there is no objective biological marker or "sign" that can be used for diagnosis.

"This so-called heterogeneity at the genetic and clinical level is the biggest challenge for genetic studies of neuropsychiatric disorders," Ophoff said. "One way to deal with these difficulties is to increase the size of the study so there is sufficient 'power' to detect genetic effects, even amidst this clinical and genetic diversity."

The fact that even this large study resulted in a limited number of schizophrenia and bipolar genes demonstrates once again, he said, the complex nature of the disease.

Explore further: New candidate genes for schizophrenia identified

Related Stories

New candidate genes for schizophrenia identified

October 21, 2008
Schizophrenia is a severe psychiatric disease characterized by disorganized behavior, delusions and hallucinations. Sadly, there is no clear understanding of its cause.

Schizophrenia and bipolar disorder: Bridging the divide

October 16, 2009
(PhysOrg.com) -- Sufferers of schizophrenia and bipolar disorder are being brought together in a major new study to determine the diseases? common genetic causes.

Study shows that a combination of common genetic variations can lead to schizophrenia

July 1, 2009
A multi-national group of investigators, including a scientist at the University of North Carolina at Chapel Hill, has discovered that nearly a third of the genetic basis of schizophrenia may be attributed to the cumulative ...

Twin study reveals epigenetic alterations of psychiatric disorders

September 21, 2011
In the first study to systematically investigate genome-wide epigenetic differences in a large number of psychosis discordant twin-pairs, research at the Institute of Psychiatry (IoP) at King's College London provides further ...

Offspring of two psychiatric patients have increased risk of developing mental disorders

March 1, 2010
Offspring of two parents with schizophrenia or bipolar disorder appear more likely to develop the same illness or another psychiatric condition than those with only one parent with psychiatric illness, according to a report ...

Genes linked to schizophrenia, bipolar disorder

September 18, 2011
Broad sweeps of the human genome have exposed genetic mutations that boost the risk of the devastating yet baffling diseases of schizophrenia and bipolar disorder, according to two studies published Sunday.

Recommended for you

Test could detect patients at risk from lethal fungal spores

September 20, 2018
Scientists at The University of Manchester have discovered a genetic mutation in humans linked to a 17-fold increase in the amount of dangerous fungal spores in the lungs.

Researchers identify a new cause of childhood mitochondrial disease

September 20, 2018
A rapid genetic test developed by Newcastle researchers has identified the first patients with inherited mutations in a new disease gene.

Why some human genes are more popular with researchers than others

September 18, 2018
Historical bias is a key reason why biomedical researchers continue to study the same 10 percent of all human genes while ignoring many genes known to play roles in disease, according to a study publishing September 18 in ...

Class of neurological disorders share 3-D genome folding pattern, study finds

September 18, 2018
In a class of roughly 30 neurological disorders that includes ALS, Huntington's Disease and Fragile X Syndrome, the relevant mutant gene features sections of repeating base pair sequences known as short tandem repeats, or ...

Researchers resolve decades-old mystery about the most commonly mutated gene in cancer

September 18, 2018
The most commonly mutated gene in cancer has tantalized scientists for decades about the message of its mutations. Although mutations can occur at more than 1,100 sites within the TP53 gene, they arise with greatest frequency ...

Study of one million people leads to world's biggest advance in blood pressure genetics

September 17, 2018
Over 500 new gene regions that influence people's blood pressure have been discovered in the largest global genetic study of blood pressure to date, led by Queen Mary University of London and Imperial College London.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.