Malaria prevention strategies could substantially cut killer bacterial infections, study suggests

September 7, 2011, Wellcome Trust

Interventions targeting malaria, such as insecticide-treated bed nets, antimalarial drugs and mosquito control, could substantially reduce cases of bacteraemia, which kill hundreds of thousands of children each year in Africa and worldwide. This is the conclusion of research published today in the Lancet and funded by the Wellcome Trust.

Researchers at the KEMRI-Wellcome Trust Research Programme in Kilifi, Kenya, examined two major killer diseases, and bacteraemia, or invasive , which includes severe cases of meningitis, pneumonia and sepsis. They hypothesised that malaria is the behind many of the cases of bacteraemia.

To test their , the researchers, led by Dr Anthony Scott from the KEMRI-Wellcome Trust Research Programme and Oxford University, took advantage of a 'genetic antimalarial' in the population – the sickle cell gene – to see if children carrying the gene were less likely to develop bacteraemia than children who do not carry the gene. Scientists have known for many years now that whilst carrying two copies of the sickle cell gene leads to the development of sickle cell disease, carrying just one copy confers strong protection against malaria.

"Our results seemed fairly conclusive: children with 'sickle cell trait', who have a single copy of the sickle cell gene, developed bacteraemia much less frequently than normal children who carried no copies," explains Dr Scott. "However, we needed to explore this further. We don't know exactly how children with sickle cell trait are protected against malaria – could it be that the same immune mechanism protects against bacteraemia too? Or does malaria itself lead to bacteraemia?"

To answer this question, the researchers studied the effect of the sickle cell trait in the same population, but after malaria had been brought under control. If sickle cell trait does directly protect against bacteraemia, then children with this condition would be less likely to develop bacteraemia even in the absence of malaria.

In Kilifi, the incidence of admission to hospital with malaria fell almost 90 per cent from 28.5 to 3.45 per 1000 childhood years over the period 1999-2007. This near-eradication of malaria over a decade offered the researchers the opportunity to compare levels of invasive bacterial infections in populations of differing levels of malaria.

The researchers measured rates of bacteraemia over the same period. They found that the rate of admission to hospital with bacteraemia fell by 44 per cent, from 2.59 to 1.45 per 1000 childhood years. The key finding, however, was that among children with sickle cell disease, the protection observed against bacteraemia disappeared as malaria also disappeared.

"We showed that children with sickle cell trait, who have a natural protection against malaria, are also protected against bacteraemia, but only because they are less likely to develop malaria," says Dr Tom Williams, a senior scientist working on the research. "The gene itself is not offering direct protection. This implies very strongly that infection with malaria makes children more susceptible to bacteraemia."

The researchers estimate that, in malaria endemic areas, over half of all cases of bacteraemia can be attributed to infection with Plasmodium falciparum, the parasite that causes malaria.

Dr Scott adds: "In Kilifi, over one in five children with invasive bacterial infection dies. We have seen great success in tackling malaria and this has had a substantial knock-on effect in reducing cases of , meningitis and . Controlling malaria in Africa should be a priority: doing this will help us prevent childhood deaths caused by malaria but it will have the added benefit of preventing deaths that are caused by invasive bacterial infections."

Combating infectious diseases is one the strategic priorities of the Wellcome Trust. Much of this work is carried out at a local level in regions where disease is endemic. This includes several major overseas programmes, including the KEMRI-Wellcome Trust Research Programme.

Explore further: Mystery solved: How sickle hemoglobin protects against malaria

Related Stories

Mystery solved: How sickle hemoglobin protects against malaria

April 28, 2011
The latest issue of the journal Cell carries an article that is likely to help solve one of the long-standing mysteries of biomedicine. In a study that challenges currently held views, researchers at the Instituto Gulbenkian ...

Recommended for you

Flu may be spread just by breathing, new study shows; coughing and sneezing not required

January 18, 2018
It is easier to spread the influenza virus (flu) than previously thought, according to a new University of Maryland-led study released today. People commonly believe that they can catch the flu by exposure to droplets from ...

New approach could help curtail hospitalizations due to influenza infection

January 18, 2018
More than 700,000 Americans were hospitalized due to illnesses associated with the seasonal flu during the 2014-15 flu season, according to federal estimates. A radical new approach to vaccine development at UCLA may help ...

Certain flu virus mutations may compensate for fitness costs of other mutations

January 18, 2018
Seasonal flu viruses continually undergo mutations that help them evade the human immune system, but some of these mutations can reduce a virus's potency. According to new research published in PLOS Pathogens, certain mutations ...

Zika virus damages placenta, which may explain malformed babies

January 18, 2018
Though the Zika virus is widely known for a recent outbreak that caused children to be born with microencephaly, or having a small head, and other malformations, scientists have struggled to explain how the virus affects ...

Study reveals how MRSA infection compromises lymphatic function

January 17, 2018
Infections of the skin or other soft tissues with the hard-to-treat MRSA (methicillin-resistant Staphylococcus aureus) bacteria appear to permanently compromise the lymphatic system, which is crucial to immune system function. ...

Fresh approach to tuberculosis vaccine offers better protection

January 17, 2018
A unique platform that resulted in a promising HIV vaccine has also led to a new, highly effective vaccine against tuberculosis that is moving toward testing in humans.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.