Scientists identify new stem cell activity in human brain, raise questions of how it develops and evolves

September 28, 2011, St. Joseph's Hospital and Medical Center

Researchers at Barrow Neurological Institute at St. Joseph's Hospital and Medical Center have identified a new pathway of stem cell activity in the brain that represents potential targets of brain injuries affecting newborns. The recent study, which raises new questions of how the brain evolves, is published in the current issue of Nature, one of the world's most cited scientific journals.

Nader Sanai, MD, director of Barrow's Brain Tumor Research Center, led this study, which is the first developmental study of human in a region of the brain called the subventricular zone, the tissue structure in which reside. Also participating in the study were researchers from University of California San Francisco and the University of Valencia in Spain.

The findings revealed that there is a pathway of young migrating neurons targeting the of the human brain in the first few months of life. After the first year of life, the subventricular zone of the brain slows down, tapering production of new by the time a child is 18-months and then to nearly zero by age two. This revelation settles conflicting prior reports that suggested that human neural stem cell cells remain highly active into adulthood.

"In the first few months of life, we identified streams of newly-generated cells from the subventricular portion of the brain moving toward the ," says Dr. Sanai. "The existence of this new pathway, which has no known counterpart in all other studied vertebrates, raises questions about the mechanics of how the human brain develops and has evolved."

Researchers believe this study holds important implications for the understanding of neonatal that can cause death or devastating, life-long brain damage. These conditions include germinal matrix hemorrhages, the most common type of brain hemorrhage that occurs in infants; and perinatal hypoxic – ischaemic injuries, exposure to low oxygen and decreased blood flow that can lead to diseases such as cerebral palsy and seizure disorders.

"The first year of human life has a window of vulnerability, as well as tremendous opportunity, for the brain," says Dr. Sanai. "It's a period of incredible growth, organization, and flexibility, as fresh neural connections are created, broken, and remade. A better understanding of how things can go wrong in that critical period could ultimately improve the chances that things will go right."

Explore further: Signal explains why site of origin affects fate of postnatal neural stem cells

Related Stories

Signal explains why site of origin affects fate of postnatal neural stem cells

July 27, 2011
New research may help to explain why the location of postnatal neural stem cells in the brain determines the type of new neurons that are generated. The research, published by Cell Press in the July 28 issue of the journal ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.