Researchers successfully perform first injection of cultured red blood cells in human donor

September 1, 2011, American Society of Hematology

For the first time, researchers have successfully injected cultured red blood cells (cRBCs) created from human hematopoietic stem cells (HSCs) into a human donor, according to study results published today in Blood, the Journal of the American Society of Hematology (ASH). As the global need for blood continues to increase while the number of blood donors is decreasing, these study results provide hope that one day patients in need of a blood transfusion might become their own donors.

Using HSCs (stem cells that form all blood cell types) from one human donor, a Paris-based research team successfully generated billions of cRBCs in a with the aid of specific that regulate the proliferation and maturation of HSCs into . Seeking to prove that the cRBCs were capable of reaching full maturation in the body, the researchers then injected the cells into four mouse models and confirmed that the cells were able to progress through the full maturation process. Using a volunteer donor, the researchers then repeated the process of creating another set of cRBCs and injected the cells back into the donor's own body to assess their survival in a human. After five days, the survival rate of the cRBCs in the donor's bloodstream was between 94 and 100 percent and, after 26 days, the rate was between 41 and 63 percent, comparable to the average 28-day half-life of normal native red blood cells. These results demonstrate that the lifespan and survival rate of are similar to conventional red blood cells, further supporting their validity as a possible source of transfusion.

"Although previous research has shown that HSCs can be developed into fully matured red blood cells, this is the first study that has proven that they are capable of survival in the human body, a major breakthrough for the transplant community," said Luc Douay, MD, PhD, senior study author and Professor of Hematology at Université Pierre et Marie Curie in Paris, France. "There is a dire need for an alternative source of transfusable blood products, especially with the risk of infection from emergent new viruses that comes with traditional transfusion. Producing red blood cells in culture is promising since other efforts to create alternative sources have not yet been as successful as once hoped."

These results are especially timely, as blood donation organizations such as the American Red Cross have recently declared a critical nationwide blood shortage. Globally, the World Health Organization (WHO) recently reported donation rates of less than 1 percent of the population in more than 70 countries. Many of these countries are considered developing or transitional and have substantial transfusion needs due to high prevalence of maternal morbidity, childhood malnutrition, trauma casualties, and infectious disease.1

"The results from our study establish the feasibility of the concept of transfusing cRBCs and show promise that an unlimited blood reserve is within reach," said Professor Douay. "Although the full-scale production of these cells will require additional technological advances in cell engineering, we believe cRBCs could prove to be a valid alternative to classic transfusion products that will not only provide an adequate supply of blood, but reduce the risk of life-threatening complications and infections that can accompany traditional transfusion."

Explore further: Team finds why stored transfusion blood may become less safe with age

Related Stories

Team finds why stored transfusion blood may become less safe with age

July 13, 2011
Transfused blood may need to be stored in a different way to prevent the breakdown of red blood cells that can lead to complications including infection, organ failure and death, say researchers at the University of Pittsburgh ...

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.