Blame backbone fractures on evolution, not osteoporosis

October 20, 2011, Case Western Reserve University

Osteoporosis is blamed for backbone fractures. The real culprit could well be our own vertebrae, which evolved to absorb the pounding of upright walking, researchers at Case Western Reserve University say.

Compared to apes, humans have larger, more porous vertebrae encased in a much thinner shell of bone.

The design works well until men and women age and suffer bone loss, leaving them vulnerable to cracks and breaks, the scientists say. Apes, on the other hand, can suffer comparable bone loss as they age, but have much thicker vertebral shells to begin with so that their vertebrae remain intact.

The findings are now published in the online journal .

"In evolution we have great adaptation, but there is sometimes a tradeoff," said Meghan Cotter, an instructor in anatomy at Case Western Reserve University School of Medicine and a lead author of the study.

"The structure is great for walking around, but not good when you have osteoporosis," she said.

Cotter worked with former master's student David Loomis, from the Musculoskeletal Mechanics and Materials Laboratory in the department of mechanical and aerospace engineering; Anatomy Professor Scott W. Simpson and Anthropology Professor Bruce Latimer, both of the Center for , and former Case Western Reserve Mechanical and Aerospace Engineering Professor Christopher J. Hernandez, who is now at Cornell University.

In his studies of early hominids, Latimer found fractures in the vertebrae of but not in ape remains in the Hamann-Todd collection. The collection of more than 3,000 human and more than 1,200 ape specimens is housed nearby at the Cleveland Museum of Natural History.

The researchers took measurements and used CT scans, Micro CT scans and computer modeling to compare the size, shape, structure, microstructure, biomechanics and strength of the 8th thoracic vertebra from skeletons of humans, gorillas, chimpanzees and orangutans. The 8th thoracic vertebra is the one of the bones most often fractured in humans with osteoporosis.

They found that just like the broad heel bone and broad ends of the leg bones in humans, the large, porous bone of the vertebra dissipates impact. The architecture is useful for mitigating the forces of walking on two feet, protecting cartilage in joints and the discs between vertebrae.

In apes, the vertebra is shorter and wider and has a thick ring of shell around a center of porous tissue – a design well-suited to providing stability needed to climb in trees and for knuckle-walking.

Much recent research has suggested that our sedentary lifestyle and modern diet are to blame for the susceptibility to and damage.

But, looking back in time, other researchers have found the same vertebral fractures in skeletons from medieval humans in England and Africa – people who likely had an active lifestyle.

Further back, such as Neanderthals and Australopithecus have larger vertebrae like those seen in people today, but certainly had a different diet and a more active lifestyle.

The fossil record is hardly complete, but clearly in order for human forebears to become upright walkers required a major reorganization of the musculoskeletal system from ancestors that walked on all fours, the researchers say.

"We're now living about twice as long as when the adaptation evolved and that results in major problems," Cotter said. "It highlights we are not perfectly evolved specimens."

Related Stories

Recommended for you

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.