Seeds of destruction in Parkinson's disease: Spread of diseased proteins kills neurons

October 5, 2011

New research suggests that small "seed" amounts of diseased brain proteins can be taken up by healthy neurons and propagated within them to cause neurodegeneration. The research, published by Cell Press in the October 6 issue of the journal Neuron, sheds light on the mechanisms associated with Parkinson's disease (PD) and provides a model for discovering early intervention therapeutics that can prevent or slow the devastating loss of neurons that underlies PD.

Alpha-synuclein (α-syn) is a brain protein that forms abnormal, neuron-damaging intracellular clumps called "Lewy bodies." These clumps are the hallmark lesions of PD and other neurodegenerative disorders known as α-synucleinopathies. Strikingly, even healthy fetal nerve cells transplanted into the brains of PD patients for therapeutic purposes can develop Lewy bodies, suggesting that α-syn pathology spreads through the nervous system. However, it is not clear whether these Lewy bodies are formed by the spread of abnormal α-syn between cells or if the neighboring diseased neurons exert a toxic influence that causes the normal grafted neurons to produce Lewy bodies.

"We examined whether exposure of neurons to α-syn fibrils recruited normal α-syn in these neurons to form Lewy bodies," explains senior author, Dr. Virginia M.-Y. Lee, from the Perelman School of Medicine at the University of Pennsylvania. "We performed our experiments using synthetic α-syn fibrils and normal neurons, similar to the physiological conditions seen in the majority of sporadic PD patients."

Dr. Lee and colleagues found that the α-syn fibrils were taken up by the neurons and acted as "seeds" that induced normal α-syn to aggregate into PD-like Lewy bodies. The fibrils were taken up by a nerve cell process and then spread to the cell body where the PD-like Lewy bodies formed and impaired neuronal function, ultimately leading to death of the neuron. This suggests that abnormal extracellular α-syn can amplify and propagate PD-like Lewy bodies throughout the nervous system.

"We have developed a novel neuronal model of PD-like α-syn inclusions that enables dissection of mechanisms leading to Lewy body formation, as well as understanding how these inclusions affect the function and viability of affected neurons," concludes Dr. Lee. "These findings open up new avenues of research into understanding mechanisms of α-synuclein pathology, its impact on neuronal function, and discovering therapies for PD and other α-synuclenopathies." The research may lead to new therapies that can prevent the diseased protein from spreading to healthy and causing irreversible damage.

Explore further: Rare genetic disorder provides unique insight into Parkinson's disease

Related Stories

Rare genetic disorder provides unique insight into Parkinson's disease

June 23, 2011
Massachusetts General Hospital investigators appear to have found the mechanism behind a previously reported link between the rare genetic condition Gaucher disease and the common neurodegenerative disorder Parkinson's disease. ...

SUMO defeats protein aggregates that typify Parkinson's disease

July 11, 2011
A small protein called SUMO might prevent the protein aggregations that typify Parkinson's disease (PD), according to a new study in the July 11, 2011, issue of The Journal of Cell Biology.

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.