Singling out the real breast cancer among the lumps

October 25, 2011, Pacific Northwest National Laboratory
Tests similar to this identify unique proteins in blood from women with breast cancer. In each of the four 25-dot squares, each dot represents one of 21 different proteins being measured in one blood sample. The color indicates how much of the protein is present. Credit: PNNL

(Medical Xpress) -- Early detection of breast cancer saves thousands of lives each year. But screening for breast cancer also produces false alarms, which can cause undue stress and costly medical bills. Now, a recent study using patient blood reveals a possible way to reduce the number of false alarms that arise during early screening. Researchers found a panel of proteins shed by breast cancer that are easily detected and can distinguish between real cancer and benign lumps.

This study used that are already in use in clinics. If the results can be replicated with more volunteers and over a longer period of time, the transition from research lab to clinical lab would be straightforward.

"We were surprised to see we could distinguish between accurate and false results produced by cancer screens such as mammograms," said Department of Energy's Pacific Northwest National Laboratory biologist Richard Zangar, who led the study published in the July issue of , Biomarkers & Prevention. "We really want to expand the work to verify our findings."

Finding is the first step to treating it, but mammograms have a high rate of false alarms. Many women go through unneeded, invasive follow-up tests. To improve the process, some researchers are working on a simple clinical blood test that would detect proteins shed by cancerous tissues.

Called biomarkers, these proteins aren't doing much better than mammograms when it comes to false positives in experimental studies. But researchers have been approaching biomarkers as if every type of breast cancer is the same. In reality, breast cancer exists as several subtypes, with each subtype having distinct characteristics.

For example, breast cancers that produce proteins called estrogen receptors are a different subtype from ones that don't and respond to different therapies. Zangar and colleagues wondered if looking for biomarkers specific for different subtypes would improve the odds of getting the diagnosis right.

To explore this idea, Zangar and his colleagues at PNNL and Duke University picked 23 candidate biomarkers and measured them using tests similar to the ones found in clinics. The team compared proteins in blood from four groups of women — about 20 women in each of the four subtypes of breast cancer — to women with benign lumps that had previously been identified as false positives. Then, Zangar's team homed in on a handful of biomarkers for each subtype that could best distinguish between the most true positives and the least false positives.

The biomarker panel for each subtype was significantly better at distinguishing between breast cancer and benign lumps than mammograms or single biomarkers. The statistical test the team used rates performance from 0.5 to 1.0 — with 0.5 indicating the biomarker panel predicts cancer randomly and 1.0 means it's perfect. and the best single biomarkers rank around 0.8. But for two of the most common breast cancer subtypes, the biomarker panels ranked above 0.95 and reached 0.99 depending on which proteins were included in the panel.

"Perhaps researchers haven't found good biomarkers because they've been treating the different subtypes as a single disease, but they actually represent unique diseases that are associated with different biomarkers," said Zangar. "We're hopeful these results can be repeated because these assays would markedly improve our ability to detect breast cancer early on, when treatment is more effective, less costly and less harsh."

In addition, the study hints about the underlying biology of breast cancer. Four of the biomarkers are proteins involved in normal breast development that turn on and off at different times during growth. The fact that these proteins show up in different ways, depending on the subtype of breast cancer, might provide clues about what goes wrong when breast tissue turns cancerous.

The team is seeking additional funding to repeat the study in larger groups of women and to follow for several years.

Explore further: Addressing high false-positive rates for mammograms

More information: Rachel M Gonzalez, et al., Plasma Biomarker Profiles Differ Depending on Breast Cancer Subtype but RANTES Is Consistently Increased, Cancer Epidemiology, Biomarkers & Prevention, July 2011, DOI 10.1158/1055-9965.EPI-10-1248 (http://cebp.aacrjournals.org/content/early/2011/05/16/1055-9965.EPI-10-1248.short).

Related Stories

Addressing high false-positive rates for mammograms

June 13, 2011
We've heard it repeatedly: early detection is key to surviving breast cancer. But even with recent advances in mammography, finding indications of breast cancer before it can metastasize remains a problem. Scientists at Pacific ...

PSA test for men could get a second life for breast cancer in women

July 13, 2011
The widely known PSA blood test for prostate cancer in men may get a second life as a much-needed new test for breast cancer, the most common form of cancer in women worldwide, scientists are reporting in a new study in the ...

Childbearing may increase risk of hormone receptor-negative breast cancer in African-American women

August 16, 2011
African-American women are at higher risk for hormone receptor-negative breast cancer, one of the most difficult subtypes to treat, but this risk could be ameliorated somewhat by breast-feeding their children.

Recommended for you

How cancer metastasis happens: Researchers reveal a key mechanism

January 18, 2018
Cancer metastasis, the migration of cells from a primary tumor to form distant tumors in the body, can be triggered by a chronic leakage of DNA within tumor cells, according to a team led by Weill Cornell Medicine and Memorial ...

Modular gene enhancer promotes leukemia and regulates effectiveness of chemotherapy

January 18, 2018
Every day, billions of new blood cells are generated in the bone marrow. The gene Myc is known to play an important role in this process, and is also known to play a role in cancer. Scientists from the German Cancer Research ...

These foods may up your odds for colon cancer

January 18, 2018
(HealthDay)—Chowing down on red meat, white bread and sugar-laden drinks might increase your long-term risk of colon cancer, a new study suggests.

The pill lowers ovarian cancer risk, even for smokers

January 18, 2018
(HealthDay)—It's known that use of the birth control pill is tied to lower odds for ovarian cancer, but new research shows the benefit extends to smokers or women who are obese.

Researchers develop swallowable test to detect pre-cancerous Barrett's esophagus

January 17, 2018
Investigators at Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center have developed a simple, swallowable test for early detection of Barrett's esophagus that offers promise ...

Scientists zoom in to watch DNA code being read

January 17, 2018
Scientists have unveiled incredible images of how the DNA code is read and interpreted—revealing new detail about one of the fundamental processes of life.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.