Study characterizes epigenetic signatures of autism in brain tissue

November 7, 2011, JAMA and Archives Journals

Neurons in the prefrontal cortex of individuals with autism show changes at numerous sites across the genome, according to a study being published Online First by the Archives of General Psychiatry.

Autism spectrum disorders are a group of complex illnesses with different causes and origins. Neuronal dysfunction in the and other regions of the brain could contribute to the cognitive and behavioral defects in autism, according to background information in the article. Neurons are that send and receive within the body.

Hennady P. Shulha, Ph.D., of the University of Massachusetts Medical School, Worcester, Mass., and colleagues examined the postmortem brain tissue of 16 individuals diagnosed with autism spectrum disorder (average age 17.4 years; range 2 to 60 years) and 16 controls without autism (ranging in age from less than one year to 70 years). The tissue was obtained through the Autism Tissue Program.

The study searched, on a genome-wide scale, for genes that show an abnormal epigenetic signature – specifically histone methylation. Histones are small proteins attached to the DNA that control gene expression and activity. While genetic information is encoded by the (genome's) DNA sequence, methylation and other types of histone modifications regulate genome organization and gene expression.

The study found hundreds of loci (the places genes occupy on chromosomes) across the genome affected by altered histone methylation in the brains of autistic individuals. However, only a small percentage – less than 10 percent – of the affected genes were affected by DNA mutations. It remains to be determined whether or not genetic changes elsewhere in the genome contributed to the observed epigenetic changes, or whether non-genetic factors were responsible for the disease process in some of the affected individuals.

" neurons from subjects with autism show changes in chromatin (the substance of chromosomes) structures at hundreds of loci genome-wide, revealing considerable overlap between genetic and epigenetic risk maps of developmental brain disorders," the authors conclude.

Explore further: Twin study reveals epigenetic alterations of psychiatric disorders

More information: Arch Gen Psychiatry. Published online Nov. 7, 2011. doi:10.1001/archgenpsychiatry.2011.151

Related Stories

Twin study reveals epigenetic alterations of psychiatric disorders

September 21, 2011
In the first study to systematically investigate genome-wide epigenetic differences in a large number of psychosis discordant twin-pairs, research at the Institute of Psychiatry (IoP) at King's College London provides further ...

Autism blurs distinctions between brain regions

June 3, 2011
Autism blurs the molecular differences that normally distinguish different brain regions, a new study suggests. Among more than 500 genes that are normally expressed at significantly different levels in the front versus the ...

Autism Speaks and BGI to complete whole genome sequencing on 10,000 with autism

October 13, 2011
Autism Speaks, the world's largest autism science and advocacy organization, and BGI, the largest genomic organization in the world and a global leader in whole genome sequencing, jointly announce their partnership to create ...

Recommended for you

Intensive behavior therapy no better than conventional support in treating teenagers with antisocial behavior

January 19, 2018
Research led by UCL has found that intensive and costly multisystemic therapy is no better than conventional therapy in treating teenagers with moderate to severe antisocial behaviour.

Babies' babbling betters brains, language

January 18, 2018
Babies are adept at getting what they need - including an education. New research shows that babies organize mothers' verbal responses, which promotes more effective language instruction, and infant babbling is the key.

College branding makes beer more salient to underage students

January 18, 2018
In recent years, major beer companies have tried to capitalize on the salience of students' university affiliations, unveiling marketing campaigns and products—such as "fan cans," store displays, and billboard ads—that ...

Inherited IQ can increase in early childhood

January 18, 2018
When it comes to intelligence, environment and education matter – more than we think.

Modulating molecules: Study shows oxytocin helps the brain to modulate social signals

January 17, 2018
Between sights, sounds, smells and other senses, the brain is flooded with stimuli on a moment-to-moment basis. How can it sort through the flood of information to decide what is important and what can be relegated to the ...

Baby brains help infants figure it out before they try it out

January 17, 2018
Babies often amaze their parents when they seemingly learn new skills overnight—how to walk, for example. But their brains were probably prepping for those tasks long before their first steps occurred, according to researchers.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.