Closer to a cure for eczema

November 23, 2011

Scientists have found that a strain of yeast implicated in inflammatory skin conditions, including eczema, can be killed by certain peptides and could potentially provide a new treatment for these debilitating skin conditions. This research is published today in the Society for Applied Microbiology's journal, Letters in Applied Microbiology.

20% of children in the UK suffer from atopic eczema and whilst this usually clears up in adolescence, 7% of adults will continue to suffer throughout their lifetime. Furthermore, this type of eczema, characterized by dry, itchy, flaking skin, is increasing in prevalence. Whilst the cause of eczema remains unknown, one known trigger factor is the Malassezia sympodialis.

This strain of yeast is one of the most common skin yeasts in both healthy individuals and those suffering from eczema. The skin barrier is more fragile and often broken in those suffering from such skin conditions, and this allows the yeast to cause infection which then further exacerbates the condition. Scientists at Karolinska Institute in Sweden looked for a way to kill Malassezia sympodialis without harming healthy .

The researchers looked at the effect on the yeast of 21 peptides which had either; cell-penetrating or . Cell-penetrating peptides are often investigated as drug delivery vectors and are able to cross the , although the exact mechanism for this is unknown. , on the other hand, are and kill many different types of microbe including some bacteria, fungi and viruses.

Tina Holm and her colleagues at Stockholm University and Karolinska Institute, added these different peptides types to separate yeast colonies and assessed the toxicity of each peptide type to the yeast. They found that six of the 21 peptides they tested successfully killed the yeast without damaging the membrane of keratinocytes, .

Tina commented "Many questions remain to be solved before these peptides can be used in humans. However, the appealing combination of being toxic to the yeast at low concentrations whilst sparing human cells makes them very promising as antifungal agents. We hope that these peptides in the future can be used to ease the symptoms of patients suffering from atopic eczema and significantly increase their quality of life."

The next step will be to further examine the mechanism(s) used by the peptides to kill yeast cells, in order to develop a potential treatment for eczema and other skin conditions.

More information: Cell-penetrating peptides as antifungals towards Malassezia sympodialis. T. Holm, J. Bruchmann, A. Scheynius, Ü. Langel. Letters in Applied Microbiology DOI. 10.1111/j.1472-765X.2011.03168.x

Related Stories

Recommended for you

Common antiseptic ingredients de-energize cells and impair hormone response

August 22, 2017
A new in-vitro study by University of California, Davis, researchers indicates that quaternary ammonium compounds, or "quats," used as antimicrobial agents in common household products inhibit mitochondria, the powerhouses ...

Researchers offer new targets for drugs against fatty liver disease and liver cancer

August 22, 2017
There may no silver bullet for treating liver cancer or fatty liver disease, but knowing the right targets will help scientists develop the most effective treatments. Researchers in Sweden have just identified a number of ...

Gut microbes may talk to the brain through cortisol

August 21, 2017
Gut microbes have been in the news a lot lately. Recent studies show they can influence human health, behavior, and certain neurological disorders, such as autism. But just how do they communicate with the brain? Results ...

Link between cells associated with aging and bone loss

August 21, 2017
Mayo Clinic researchers have reported a causal link between senescent cells - the cells associated with aging and age-related disease - and bone loss in mice. Targeting these cells led to an increase in bone mass and strength. ...

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.