With training, a failing sense of smell can be reversed

November 20, 2011, New York University School of Medicine

In a new study scientists at NYU Langone Medical Center have shown that the sense of smell can be improved. The new findings, published online November 20, 2011, in Nature Neuroscience, suggest possible ways to reverse the loss of smell due to aging or disease.

Smell is unique among our senses, explains Donald A. Wilson, PhD, professor of child and adolescent psychiatry at NYU Langone Medical Center and senior research scientist at the Emotional Brain Institute at Nathan S. Kline Institute for Psychiatric Research, who led the study. The olfactory bulb, a structure beneath the frontal cortex that receives from the nose, also has direct connections to the amygdala, which controls emotions and physiology, and to higher-order regions like the , involved in cognition and planning. "Unlike information from your eyes and ears that has gone through many connections to reach the , the is just two connections away," says Dr. Wilson. "The result is an immediate pathway from the environment through our nose to our memory."

Although impairment in the sense of smell is associated with Alzheimer's disease, Parkinson's disease, schizophrenia, and even normal aging, exactly why smell weakens remains a mystery, but recent laboratory research led by Dr. Wilson reveals how it may occur. "We located where in the brain loss of smell may happen," he says. "And we showed that training can improve the sense of smell, and also make it worse."

Dr. Wilson and Julie Chapuis, PhD, a post-doctoral fellow, placed thirsty in boxes with a snout-sized hole in each of three walls and exposed them to brief blasts of odors through the middle hole. There were three smells in all: a mix of 10 chemicals from fruits, oils, cleaning agents, etc.; the same mixture with one chemical replaced by another; and the same mixture minus one of the chemicals. When the rodents identified one smell, they were rewarded with a sip of water by going to the hole in the left side wall, for another smell they received water by going to the right side wall.

. Rats could readily distinguish between odors when a chemical had been replaced in one mixture, but when one component had simply been removed, they could not differentiate. The researchers then anesthetized the rats and inserted electrodes into their brains. Within the olfactory bulb, each smell produced a different pattern of electrical activity. But in the piriform (olfactory) cortex, a half-inch-sized area of the rat cerebral cortex, the odors that rats could tell apart produced distinct patterns of activity, while those the rats could not distinguish produced identical patterns.

Drs. Wilson and Chapuis then trained a new group of rats to discriminate between the odors the first animals couldn't tell apart by rewarding them over and over with sips water for choosing the appropriate hole. "We made them connoisseurs," says Dr. Wilson. In the rats' piriform cortex, activity patterns elicited by these similar odors were now different as well.

They trained a third group of animals to ignore the difference between odors the first rats could readily distinguish by giving them water at the same hole after exposure to either odor. This effectively dulled their sense of smell: the rats couldn't tell one smell from the other, even for a reward. Their loss of discrimination was reflected in the piriform cortex, which now produced similar electrical patterns in response to both odors.

"Our findings suggest that while olfactory impairment may reflect real damage to the sensory system, in some cases it may be a 'use it or lose it' phenomenon," says Dr. Wilson. This opens the door for potential smell training therapies that could help restore smell function in some cases. "Odor training could help fix broken noses," he says.

Explore further: Researcher finds elderly lose ability to distinguish between odors

Related Stories

Researcher finds elderly lose ability to distinguish between odors

November 10, 2011
Scientists studying how the sense of smell changes as people age, found that olfactory sensory neurons in those 60 and over showed an unexpected response to odor that made it more difficult to distinguish specific smells, ...

Hunger hormone enhances sense of smell

April 12, 2011
An appetite-stimulating hormone causes people and animals to sniff odors more often and with greater sensitivity, according to a new study in the April 13 issue of The Journal of Neuroscience. The findings suggest ghrelin ...

Recommended for you

New neuron-like cells allow investigation into synthesis of vital cellular components

January 22, 2018
Neuron-like cells created from a readily available cell line have allowed researchers to investigate how the human brain makes a metabolic building block essential for the survival of all living organisms. A team led by researchers ...

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.