Researchers find way to screen for broad range of cancer-causing genetic changes

November 9, 2011, European Society for Medical Oncology

Researchers in the United States have shown, for the first time, that it is possible to screen cancer patients for a broad range of cancer-causing genetic mutations as part of normal clinical practice. By identifying patients' individual genotypes within a relatively short time frame, doctors are able to target tumours with the most appropriate therapy.

The study, which is published in the cancer journal, Annals of Oncology today, was carried out in patients with non-small-cell , but already the researchers are using it in a range of other cancers as well.

Patients with (NSCLC) may have mutations in any of at least 14 different genes (probably more, as yet undiscovered). Until now, it has only been possible to search for single or a small number of genetic mutations. But as more and more genes are discovered to be involved in more cancers, it has become increasingly important to develop a way of determining the mutational status of a large number of genes at once.

Assistant Professor of Medicine at Harvard Medical School and thoracic medical oncologist at the Massachusetts General Hospital Cancer Center (Boston, USA), Lecia Sequist (MD, MPH), and Dora Dias-Santagata (PhD), who is co-director of the Translational Research Laboratory in the Massachusetts General Hospital Pathology Department and Instructor of Pathology at Harvard Medical School, and their team have developed a clinical test called SNaPshot. It can test over 50 well-known mutation sites (hot-spots) in 14 key cancer genes, with an average turnaround time from a sample being sent for testing to final results of just 2.8 weeks. The genes include those such as EGFR, KRAS, BRAF, HER2, etc.

SNaPshot uses a technique called "multiplex PCR", which amplifies multiple mutation sites in different genes, in a single (PCR) experiment [2], thereby saving considerable time and effort.

Dr Dias-Santagata explained: "This test allows us to look for a defined set of common mutations that occur in cancer cells, but not in the other cells of the body. These mutations affect genes that disrupt the checks and balances that usually govern the behaviour of normal cells, giving the mutant cells an advantage to divide and multiply, and the potential to give rise to a tumour. Targeted cancer therapies or 'smart drugs', each developed to fight a specific group of genetic aberrations, are now available. Because each tumour will harbour a specific set of mutations, the SNaPshot test allows us to match individual patients with the therapies that will most likely be effective in treating their cancer." Dr Sequist added: "Choosing the right therapy can raise response rates in NSCLC patients from around 20-30% to 60-75% and may improve survival."

From March 2009 to May 2010 samples from 589 NSCLC patients were analysed using SNaPshot; 546 patients had samples with enough tissue to be tested, and turnaround time ranged from 1 to 8.9 weeks – with the longer time usually being due to retesting some samples. One or more mutations or rearrangements were found in 51% (282) of the samples, with the most common being in the KRAS (24%), EGFR (13%), ALK (5%), TP53 (5%) and PIK3CA (4%) genes.

Out of 353 patients with advanced disease (stage IIIb, IV or recurrent), 170 had or rearrangements in EGFR, KRAS, ALK, BRAF, PIK3CA and HER2 genes and were classified as "potentially targetable" as these patients could join clinical trials examining drugs targeting these genetic changes. Another 30 patients with EGFR mutations were treated outside a clinical trial with erlotinib, an EGFR inhibitor, which is already used to treat lung .

Prof Sequist said: "To our knowledge we are the first centre to offer this broad multiplexed genetic screening to all non-small-cell lung cancer patients. Broad genotyping is going to become part of everyday care for lung cancer patients – the field is clearly moving in this direction. Our study is exciting because it demonstrates that indeed it is possible today to integrate testing for multiple genetic biomarkers into a busy clinic and steer patients toward personalised therapies."

Dr. Dias-Santagata added: "In contrast with prior genotyping strategies (mainly focused on testing EGFR and KRAS), employing a broad gene panel enabled us to provide a therapeutic alternative to lung cancer patients whose tumours harboured much less frequent genetic abnormalities (such as mutations in PIK3CA and BRAF, or rearrangements in ALK). Taken together, these individuals accounted for around ten percent of our patient population, but they would have remained 'invisible' in the absence of a comprehensive genotyping panel, like the one used here."

Prof Sequist and Dr Dias-Santagata say that SNaPshot can be performed in most existing clinical molecular diagnostic laboratories affiliated to hospitals and other institutions, using equipment that is already available.

Although SNaPshot was used initially on NSCLC patients, Dr Dias-Santagata and her colleagues are now using it in a range of solid tumours such as colorectal, breast and gliomas. In addition, they are planning to extend their analyses to cancers of the blood, including acute myeloid leukaemia. "While the present report describes the results of lung cancer genotyping, the SNaPshot test has been making a difference to clinical decision-making for a broader range of cancer patients. Future goals for testing involve the use of several technologies to obtain a more detailed genetic signature for each tumour. We hope that this approach will help us identify therapeutic options for a much larger fraction of cancer patients and provide a good resource to understand differences in response to therapy," said Dr Dias-Santagata.

Explore further: Tumors in majority of patients with advanced lung cancer found to have genetic mutations that can be treated with target

More information: "Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical practice". Annals of Oncology. doi:10.1093/annonc/mdr489

Related Stories

Tumors in majority of patients with advanced lung cancer found to have genetic mutations that can be treated with target

June 6, 2011
Screening tumor samples for cancer-causing genetic mutations can help physicians tailor treatment to specifically target those mutations in patients with advanced lung cancer.

ALK rearrangement found in nearly 10 percent of patients in Lung Cancer Mutation Consortium

July 5, 2011
ALK rearrangement has been found in 9.6% of lung cancer patients tested in the Lung Cancer Mutation Consortium, and MET amplification in another 4.1%, reflecting how many patients might benefit from targeted therapies such ...

Lung cancer ALK rearrangement may predict pemetrexed efficacy, study shows

September 1, 2011
Patients with ALK-rearranged non-small cell lung cancer (NSCLC) responded significantly better to pemetrexed (brand name: Alimta) than patients whose cancer did not show ALK translocation, according to research published ...

Recommended for you

New approach attacks 'undruggable' cancers from the outside in

January 23, 2018
Cancer researchers have made great strides in developing targeted therapies that treat the specific genetic mutations underlying a patient's cancer. However, many of the most common cancer-causing genes are so central to ...

Study: Cells of three advanced cancers die with drug-like compounds that reverse chemo failure

January 23, 2018
Researchers at Southern Methodist University have discovered three drug-like compounds that successfully reverse chemotherapy failure in three of the most commonly aggressive cancers—ovarian, prostate and breast.

'Hijacker' drives cancer in some patients with high-risk neuroblastoma

January 23, 2018
Researchers have identified mechanisms that drive about 10 percent of high-risk neuroblastoma cases and have used a new approach to show how the cancer genome "hijacks" DNA that regulates other genes. The resulting insights ...

Enzyme inhibitor combined with chemotherapy delays glioblastoma growth

January 23, 2018
In animal experiments, a human-derived glioblastoma significantly regressed when treated with the combination of an experimental enzyme inhibitor and the standard glioblastoma chemotherapy drug, temozolomide.

Researchers identify a protein that keeps metastatic breast cancer cells dormant

January 23, 2018
A study headed by ICREA researcher Roger Gomis at the Institute for Research in Biomedicine (IRB Barcelona) has identified the genes involved in the latent asymptomatic state of breast cancer metastases. The work sheds light ...

Boosting cancer therapy with cross-dressed immune cells

January 22, 2018
Researchers at EPFL have created artificial molecules that can help the immune system to recognize and attack cancer tumors. The study is published in Nature Methods.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.