The tangled web in Alzheimer's protein deposits is more complex than once thought

November 1, 2011, Federation of American Societies for Experimental Biology

Scientists from the National Institutes of Health in the United States have made an important discovery that should forever change the scope and direction of Alzheimer's research. Specifically, they have discovered that the protein tangles which are a hallmark of the disease involve at least three different proteins rather than just one. The discovery of these additional proteins, called neurofilaments and vimentin, should help scientists better understand the biology and progression of the disease as well as provide additional drug discovery targets. This discovery was published in the November 2011 issue of the FASEB Journal.

"Since neurofilaments are the predominant protein in nerve cells, our study suggests that we should refocus our research on the biology of these filamentous proteins in an effort to understand how they are normally regulated and deregulated in response to human aging," said Harish C. Pant, Ph.D., a senior researcher involved in the work from the Cytoskeletal Section of the Laboratory of Neurochemistry at the National Institute of Neurological Disorders and Stroke at the National Institutes of Health in Bethesda, Maryland.

To make their discovery, Pant and colleagues identified normal and abnormal proteins present in autopsy samples of the brains of Alzheimer's disease victims. Then they isolated and purified the tangles (which are knots of abnormally aggregated filaments that fill and compromise ) from the autopsy samples and compared their to age- and post mortem-matched samples of brains from patients who died of other causes, such as accidents. Through a combination of improved instrumentation and informatics, it was possible to resolve the mixture of proteins successfully and identify the novel Alzheimer's disease proteins. Previous research suggested that only one protein, called "tau," is present in these tangles.

"This is a breakthrough of great importance: tau is not the only target," said Gerald Weissmann, M.D., Editor-in-Chief of the . "Before this discovery, we approached these tangles as if they were woven of one piece of string. Now we know that there are at least three proteins involved, we're much closer to untangling the Alzheimer's web. Without question, discoveries like this bring us closer than ever to advanced Alzheimer's treatments, and it is a good example of why NIH funding is among the best investments our nation can make toward improving health and well being."

Explore further: Study reveals link between high cholesterol and Alzheimer's disease

More information: Parvathi Rudrabhatla, Howard Jaffe, and Harish C. Pant. Direct evidence of phosphorylated neuronal intermediate filament proteins in neurofibrillary tangles (NFTs): phosphoproteomics of Alzheimer's NFTs. FASEB J. November 2011 25:3896-3905; doi:10.1096/fj.11-181297

Related Stories

Study reveals link between high cholesterol and Alzheimer's disease

September 12, 2011
People with high cholesterol may have a higher risk of developing Alzheimer's disease, according to a study published in the September 13, 2011, issue of Neurology, the medical journal of the American Academy of Neurology.

Recommended for you

Finding unravels nature of cognitive inflexibility in fragile X syndrome

January 22, 2018
Mice with the genetic defect that causes fragile X syndrome (FXS) learn and remember normally, but show an inability to learn new information that contradicts what they initially learned, shows a new study by a team of neuroscientists. ...

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.