New study uncovers how brain cells degrade dangerous protein aggregates

November 7, 2011
Figure 1: Model for p62-mediated selective autophagy pathway. Credit: RIKEN

Researchers at the RIKEN Brain Science Institute (BSI) have discovered a key mechanism responsible for selectively degrading aggregates of ubiquitinated proteins from the cell. Their findings indicate that the capture and removal of such aggregates is mediated by the phosphorylation of a protein called p62, opening the door to new avenues for treating neurodegenerative diseases such as Huntington's disease and Alzheimer's disease.

One of the most important activities of a cell is the production of proteins, which play essential functions in everything from oxygen transport, to immune defense, to food digestion. Equally important to the cell's survival is how it deals with these proteins when they pass their expiry date: damaged or misfolded proteins have been associated with a range of debilitating conditions, including such as Alzheimer's disease.

In eukaryotic cells, the recycling of damaged or misformed proteins is governed by a small called ubiquitin in a process called "ubiquitination". By attaching itself to a protein, a ubiquitin molecule can tag the protein for destruction by proteasomes, large protein complexes that degrade and recycle unneeded proteins in the cell. This recycling of proteins by proteasomes is crucial to the maintenance of .

With their research, the BSI research group sought to shed light on one area where proteasome-based recycling falls short: protein complexes or aggregates, which proteasomes have trouble degrading. The group shows that this weakness is made up for by the phosphorylation of a protein called p62 at the serine 403 (S403) loci of its ubiquitin-associated (UBA) domain, which triggers a catabolic process called selective autophagy that degrades protein aggregates. It does this by forming a "sequestosome", a structure which sequesters polyubiquitinated protein aggregates in preparation for autophagy.

Published in the journal Molecular Cell, the discovery of this mechanism opens the door to the development of new, more effective drugs for selectively degrading , promising applications in the treatment of a range of neurodegenerative diseases.

Explore further: Researchers identify enzyme that regulates degradation of damaged proteins

Related Stories

Researchers identify enzyme that regulates degradation of damaged proteins

September 27, 2011
A study by scientists at the University of California, San Diego and UC Irvine has identified an enzyme called a proteasome phosphatase that appears to regulate removal of damaged proteins from a cell. The understanding of ...

Cellular stress can induce yeast to promote prion formation

July 23, 2011
It's a chicken and egg question. Where do the infectious protein particles called prions come from? Essentially clumps of misfolded proteins, prions cause neurodegenerative disorders, such as mad cow/Creutzfeld-Jakob disease, ...

Recommended for you

Study finds harmful protein on acid triggers a life-threatening disease

July 27, 2017
Using an array of modern biochemical and structural biology techniques, researchers from Boston University School of Medicine (BUSM) have begun to unravel the mystery of how acidity influences a small protein called serum ...

CRISPR sheds light on rare pediatric bone marrow failure syndrome

July 27, 2017
Using the gene editing technology CRISPR, scientists have shed light on a rare, sometimes fatal syndrome that causes children to gradually lose the ability to manufacture vital blood cells.

Post-stroke patients reach terra firma with new exosuit technology

July 26, 2017
Upright walking on two legs is a defining trait in humans, enabling them to move very efficiently throughout their environment. This can all change in the blink of an eye when a stroke occurs. In about 80% of patients post-stroke, ...

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.