A brighter future for infertility treatment: study

December 5, 2011
A brighter future for infertility treatment: study
The various stages of sperm cell development.

(Medical Xpress) -- Male infertility could soon have a boost through new treatments at a sub-DNA 'epigenetic' level, according to researchers from The Australian National University.

The research team, led by Professor David Tremethick of The John Curtin School of Medical Research at ANU, have uncovered a new mechanism of gene activation which will have important implications in understanding how cellular differentiation is achieved. In the future, it may also allow the development of new approaches to treat . Their research is published in the latest issue of .

The team which included post-doctoral researchers Tanya Soboleva and Maxim Nekrasov made the breakthrough by looking at what’s happening in our bodies at the epigenetic level, which controls how our DNA is expressed.

“Epigenetic information goes beyond DNA-stored information essential for interpreting our genome,” said Professor Tremethick. “There are over 250 different cell types in the human body, and while the DNA sequence of these is essentially the same, their epigenetic information or profiles are very different. Additionally, our entire is compacted into a structure known as chromatin.

“Epigenetic information controls gene expression, ensuring that only genes for a specific cell type are turned on, while inappropriate genes are switched off by ‘opening’ or ‘closing’ the structure of chromatin.

“Regulation of this epigenetic information significantly contributes to embryonic development, and ensures our capacity to reproduce. Mis-regulation of our epigenetic code has been directly implicated in many common human diseases, as well as contributing to human infertility,” he said.

The research team’s study characterized the epigenetic changes that occur during sperm development, and in doing so identified a novel epigenetic mark, called H2A.Lap1.

“Our research revealed that H2A.Lap1 regulates sperm gene expression by directly opening the chromatin structure at the start site of active genes,” said Professor Tremethick.

“The study has therefore uncovered a new way to activate , which could help us understand how is achieved. In the future, this could also allow for the development of treatments for male which operate at the epigenetic level.”

Explore further: Flies can pass the effects of stress to their young in the form of chromosomal modifications

Related Stories

Flies can pass the effects of stress to their young in the form of chromosomal modifications

November 11, 2011
Most people don’t realize the extent of the biochemical and physiological changes that stress causes; indeed, new research suggests that offspring might even be vulnerable to changes in gene expression wrought by chronic ...

Silence of the genes

July 22, 2011
A molecular mechanism by which gene silencing is regulated at the genome-wide level in plants has been uncovered by a research team led by Motoaki Seki of the RIKEN Plant Science Center, Yokohama, Japan. The researchers ...

Recommended for you

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly discovered gene variants link innate immunity and Alzheimer's disease

July 17, 2017
Three new gene variants, found in a genome wide association study of Alzheimer's disease (AD), point to the brain's immune cells in the onset of the disorder. These genes encode three proteins that are found in microglia, ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.