A brighter future for infertility treatment: study

December 5, 2011
A brighter future for infertility treatment: study
The various stages of sperm cell development.

(Medical Xpress) -- Male infertility could soon have a boost through new treatments at a sub-DNA 'epigenetic' level, according to researchers from The Australian National University.

The research team, led by Professor David Tremethick of The John Curtin School of Medical Research at ANU, have uncovered a new mechanism of gene activation which will have important implications in understanding how cellular differentiation is achieved. In the future, it may also allow the development of new approaches to treat . Their research is published in the latest issue of .

The team which included post-doctoral researchers Tanya Soboleva and Maxim Nekrasov made the breakthrough by looking at what’s happening in our bodies at the epigenetic level, which controls how our DNA is expressed.

“Epigenetic information goes beyond DNA-stored information essential for interpreting our genome,” said Professor Tremethick. “There are over 250 different cell types in the human body, and while the DNA sequence of these is essentially the same, their epigenetic information or profiles are very different. Additionally, our entire is compacted into a structure known as chromatin.

“Epigenetic information controls gene expression, ensuring that only genes for a specific cell type are turned on, while inappropriate genes are switched off by ‘opening’ or ‘closing’ the structure of chromatin.

“Regulation of this epigenetic information significantly contributes to embryonic development, and ensures our capacity to reproduce. Mis-regulation of our epigenetic code has been directly implicated in many common human diseases, as well as contributing to human infertility,” he said.

The research team’s study characterized the epigenetic changes that occur during sperm development, and in doing so identified a novel epigenetic mark, called H2A.Lap1.

“Our research revealed that H2A.Lap1 regulates sperm gene expression by directly opening the chromatin structure at the start site of active genes,” said Professor Tremethick.

“The study has therefore uncovered a new way to activate , which could help us understand how is achieved. In the future, this could also allow for the development of treatments for male which operate at the epigenetic level.”

Explore further: Flies can pass the effects of stress to their young in the form of chromosomal modifications

Related Stories

Flies can pass the effects of stress to their young in the form of chromosomal modifications

November 11, 2011
Most people don’t realize the extent of the biochemical and physiological changes that stress causes; indeed, new research suggests that offspring might even be vulnerable to changes in gene expression wrought by chronic ...

Silence of the genes

July 22, 2011
A molecular mechanism by which gene silencing is regulated at the genome-wide level in plants has been uncovered by a research team led by Motoaki Seki of the RIKEN Plant Science Center, Yokohama, Japan. The researchers ...

Recommended for you

Exploring disease predisposition to deliver personalized medicine

October 23, 2017
Geneticists from the University of Geneva have taken an important step towards true predictive medicine. Exploring the links between diseases and tissue-specific gene activity, they have been able to build a model that constitutes ...

Maternal diet may program child for disease risk, but better nutrition later can change that

October 20, 2017
Research has shown that a mother's diet during pregnancy, particularly one that is high-fat, may program her baby for future risk of certain diseases such as diabetes. A new study from nutrition researchers at the University ...

New gene editing approach for alpha-1 antitrypsin deficiency shows promise

October 20, 2017
A new study by scientists at UMass Medical School shows that using a technique called "nuclease-free" gene editing to correct cells with the mutation that causes a rare liver disease leads to repopulation of the diseased ...

Researchers find evidence of DNA damage in veterans with Gulf War illness

October 19, 2017
Researchers say they have found the "first direct biological evidence" of damage in veterans with Gulf War illness to DNA within cellular structures that produce energy in the body.

Researchers drill down into gene behind frontotemporal lobar degeneration

October 19, 2017
Seven years ago, Penn Medicine researchers showed that mutations in the TMEM106B gene significantly increased a person's risk of frontotemporal lobar degeneration (FTLD), the second most common cause of dementia in those ...

Genetic variants associated with obsessive-compulsive disorder identified

October 18, 2017
(Medical Xpress)—An international team of researchers has found evidence of four genes that can be linked to obsessive-compulsive disorder (OCD). In their paper published in the journal Nature Communications, the group ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.