Scientists find missing link in regulation of glucose

December 22, 2011 By Robert Perkins, USC College

(Medical Xpress) -- A team led by USC neuroscientist Alan Watts identified for the first time a biochemical signal that helps regulate the amount of glucose in the blood.

A better understanding of the way the body naturally deals with incorrect levels of glucose could lay the foundation for better treatments for  — which occurs when a person is unable to produce the glucose-regulating hormone, insulin.

“There’s a lot of interest in the field to determine how the brain detects and reacts to changes in ,” said Watts, professor of neurobiology in USC Dornsife.

Watts and his team discovered that enzymes known as mitogen-activated protein kinases form a critical link between changes in blood , certain in the hypothalamus and the release of glucose-controlling hormones.

“Nobody has shown that before,” Watts said.

Understanding, in detail, the way in which these neurons make necessary adjustments to blood glucose levels will provide important new insights into the complications of Type 1 , Watts said.

Currently, the way that Type 1 patients can cope with hyperglycemia (too much glucose in the blood) is by giving themselves insulin shots. Insulin moves glucose out of the bloodstream and locks it up as glycogen in liver and muscle tissue. The problem, Watts said, is that the insulin therapy itself can sometimes be problematic, resulting in hypoglycemia (too little glucose in the blood) and even further complications.

There has to be a better way, Watts said.

To explore the way the body normally balances between hyper- and hypoglycemia, Watts and his team studied neurons in the brains of rats.

Neurons use electrical impulses and neurochemicals to communicate within the nervous system. Corticotropin-releasing hormone (CRH) neurons in the hypothalamus — a part of the brain that connects the nervous system to the hormone-secreting endocrine system — are “the head of the mammalian stress response,” Watts said. “They drive the release of glucocorticoid, which is a critical hormone for maintaining normal blood glucose.”

So when glucose levels in the blood fall (a form of stress), the brain sends signals to the CRH neurons telling them to release glucocorticoid to help compensate.

“These neurons receive inputs from many parts of the brain,” Watts said, “but a single set of inputs from the hindbrain appears critical for driving CRH neurons during hypoglyclemia. The lower the blood , the stronger the stress, so they release more hormones.”

Watts’ article appears in the Dec. 14 issue of The Journal of Neuroscience.

Explore further: Research reveals hormone action that could lead to treatments for type 2 diabetes

Related Stories

Research reveals hormone action that could lead to treatments for type 2 diabetes

September 30, 2011
(Medical Xpress) -- Researchers at the University of Cincinnati have discovered that the immediate improvement in blood sugar (blood glucose) for those with type 2 diabetes who undergo gastric bypass surgery is related to ...

Type 2 diabetes: 'Intensive' versus 'conventional' blood glucose control -- no clear picture

August 1, 2011
Research published in The Cochrane Library found that the risk of death and cardiovascular disease, such as stroke, was unchanged whether glucose control was intense or conventional. They did find, however, that when aiming ...

Experts find continuous glucose monitoring beneficial in maintaining target blood glucose levels

October 11, 2011
Patients with diabetes face daily challenges in managing their blood glucose levels, and it has been postulated that patients could benefit from a system providing continuous real-time glucose readings. Today, The Endocrine ...

Recommended for you

Epilepsy linked to brain volume and thickness differences

January 22, 2018
Epilepsy is associated with thickness and volume differences in the grey matter of several brain regions, according to new research led by UCL and the Keck School of Medicine of USC.

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.