Scientists create first realistic 3D reconstruction of a brain circuit

December 7, 2011

Researchers from the lab of Nobel laureate Bert Sakmann, MD, PhD at the Max Planck Florida Institute (MPFI) are reporting that, using a conceptually new approach and state-of-the-art research tools, they have created the first realistic three-dimensional diagram of a thalamocortical column in the rodent brain. A vertically organized series of connected neurons that form a brain circuit, the cortical column is considered the elementary building block of the cortex, the part of the brain that is responsible for many of its higher functions.

This achievement is the first step toward creating a complete computer model of the brain, and may ultimately lead to an understanding of how the brain computes and how it goes awry in neurological, neurodevelopmental and psychiatric disorders. The study is published online in the journal .

"This is the first complete 3D reconstruction of a realistic model of a cortical column," said Marcel Oberlaender, PhD, first author on the paper. "This is the first time that we have been able to relate the structure and function of individual neurons in a live, awake animal, using complete 3D reconstructions of axons and dendrites. By creating this model, we hope to begin understanding how the brain processes sensory information and how this leads to specific behaviors."

The electrically excitable axon extends from the body of the neuron (brain cell) and often gives rise to many smaller branches before ending at nerve terminals. Dendrites extend from the neuron cell body and receive messages from other neurons.

In addition to recreating the structure of the cortical column, the study also sheds significant light on the function of its constituent neurons, and the relationship between their functionality and structure. In looking at neurons' response to sensory stimulation, the researchers discovered that sensory-evoked activity in some of the cells can be directly correlated with their structure and connectivity, which marks a first step toward understanding basic organizational principles of the brain.

Working with both awake and anesthetized rats, and also examining stained brain slices, the neuroscientists used sophisticated new light microscopy as well as custom designed tools to examine 15,000 neurons of nine identified cell types. Using a painstaking, six-step process, the researchers identified and reconstructed the column's constituent parts using sophisticated software and a range of other new state-of-the-art tools and processes.

Described in a related paper co-authored by Drs. Sakmann and Oberlaender, these new methods, which were developed in part at the Max Planck Florida Institute, allow researchers, for the first time, to simulate electrical signaling in a computer model at subcellular and millisecond resolution.

"We can now quantify the number of neurons of each cell type, their three-dimensional structure, connectivity within these networks, and response to sensory stimulation, in both an anesthetized and awake animal," said Dr. Oberlaender. "Such a quantitative assessment of cortical structure and function is unprecedented and marks a milestone for future studies on mechanistic principles that may underlie signal flow in the , during such functions as decision making."

Explore further: Deeper insight in the activity of cortical cells

Related Stories

Deeper insight in the activity of cortical cells

July 12, 2011
Visual and tactile objects in our surroundings are translated into a perception by complex interactions of neurons in the cortex. The principles underlying spatial and temporal organization of neuronal activity during decision-making ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.