Tiny electric currents may aid stroke recovery

December 8, 2011, Oxford University
The approach involves applying tiny electric currents across parts of the brain.

(Medical Xpress) -- Tiny electric currents applied across regions of the brain can improve hand movements in recovering stroke patients for a short period, an Oxford University study has demonstrated.

The researchers are hopeful that developing this brain stimulation technique may provide a useful addition to standard physiotherapy in helping the recovery of .

The study involving 13 patients was able to observe a significant 5–10% improvement in patients’ response times in making hand movements.

The effect for this single treatment lasted for an hour or so. But neuroscience studies in other research areas have shown effects lasting months after daily application of this form of brain stimulation.

The study, funded by the NIHR Oxford Biomedical Research Center, the Dunhill Medical Trust and the Wellcome Trust, is published in the journal Brain.

"The improvements in movement and reaction times were significant," says lead researcher Dr. Charlotte Stagg of the Oxford Center for Functional Magnetic Resonance Imaging of the Brain (FMRIB) at Oxford University. "Patients certainly noticed them, but they were short-lived. However, we are very hopeful that daily brain stimulation would lead to longer-lasting improvements.

Much larger clinical studies would be needed to show that brain stimulation had a lasting effect in producing clinical benefits for stroke patients, for example in greater recovery of movement and ability to carry out all the activities of daily life.

The Oxford team, for the next stage of their research, are currently recruiting around 30 stroke patients to a trial that will look at whether daily brain stimulation in addition to physiotherapy exercises can lead to tangible benefits after a period of three months.

"This was a study in a small group. Large-scale trials would be needed before concluding that the approach benefits those recovering from strokes," says Dr. Stagg. But she notes that: "The brain stimulation technique is relatively cheap, easy to use and it’s portable. You could imagine physiotherapists using it in their practice in the future."

The damage caused by a stroke can be widespread and long-lasting, often involving weakness or loss of movement in one side of the body. Many people will need a significant period of rehabilitation and to recover. The amount of movement and independence people are able to regain is very variable, so developing extra therapies to aid recovery would be of great importance.

The Oxford University researchers headed by Professor Heidi Johansen-Berg, along with colleagues at the Oxford Centre for Enablement at the Nuffield Orthopaedic Centre, set out to investigate whether a brain stimulation technique designed to increase the activity in the motor cortex would improve hand movements in people who’d had a stroke.

The brain stimulation technique, called transcranial direct current stimulation or TDCS, involves passing a small electrical current of about 1 milliamp across part of the brain using simple pads placed on the outside of the head. It’s a relatively new technique but is known to increase the ‘excitability’ of neurons in the targeted region of the brain. It has been shown to be safe in many studies: if anything, people may feel a slightly tingly or itchy sensation on their scalp.

The study included a wide range of patients who’d had a stroke at least six months previously – aged from 30 to 80, both sexes, and different types of stroke.

The patients carried out a simple task involving a hand movement in response to images on a computer screen three times – before, during and after brain stimulation using the electric current for 20 minutes.

The 5–10% improvement in reaction times was observed during and after the short time of applying the current. The improvement was not seen in dummy treatments when no current was applied. Nor was it seen when the current was applied in the opposite direction, which would tend to reduce brain activity in the stroke-affected region.

"The improvement was almost immediate. It really did work, says Dr. Stagg.

"The approach seems to have an effect in a wide range of stroke patients. Those who had seen least recovery from their stroke seemed to show most improvement in this simple test," she adds.

The study participants also completed similar tasks in an MRI scanner to detect whether there were any changes in brain activity.

After the with the electric current, there was increased activity in brain regions associated with movement in the stroke-affected side of the body.

"The amount that brain activity increased, as seen in the fMRI scans, appeared to be linked to the level of improvement seen in people’s reaction times," explains Dr. Stagg.

Explore further: Electrical stimulation to the brain makes learning easier

Related Stories

Electrical stimulation to the brain makes learning easier

September 21, 2011
(Medical Xpress) -- A new study presented at the British Science Festival by Professor Heidi Johansen-Berg from the University of Oxford shows that the application of small electrical currents to specific parts of the brain ...

Magnetic treatment improves stroke patients' ability to communicate

November 15, 2011
(Medical Xpress) -- Magnetic stimulation of the brain could help improve language skills of stroke survivors with aphasia, according to research by The University of Queensland.

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.