Vasodilator hormone improved kidney function, blood flow in PKD model

December 6, 2011

After a four-week course of the vasodilator hormone relaxin, kidney function and blood flow immediately improved in lab rats genetically altered to model polycystic kidney disease (PKD), a life-threatening genetic disorder, according to research presented on Dec. 6 at the American Society for Cell Biology Annual Meeting in Denver.

In addition to widening the blood vessels, relaxin lowered the collagen scores of the PKD rats, indicating that the drug had slowed or helped dissolve the old fibroid tissue that characterizes the kidneys of animals and humans with the disease, according to Heather Ward, Ph.D., and Angela Wandinger-Ness, Ph.D., of the University of New Mexico and collaborators.

PKD is a life-threatening that affects 600,000 Americans, according to the National Institute of Diabetes, Digestive, and Kidney Diseases (NIDDK). About 50% of individuals diagnosed with PKD develop end-stage by age 60.

The researchers also noted that in rats, relaxin reduced the size of the large fluid-filled cysts that gradually encroach on in human PKD patients.

PKD was the first disease to be recognized as a ciliopathy, a disorder characterized by defects in primary cilia, tiny hair-like structures that protrude from virtually every cell in the human body.

In the search of effective treatments, most PKD researchers have concentrated on halting or reversing PKD's characteristic cyst formation.

Ward and her colleagues instead examined the non-cystic aspects of PKD progression, particularly the poor blood flow and extensive internal scarring called fibrosis that encroaches on the glomeruli, the vital clusters of looping blood vessels that filter wastes and excess water from the blood.

They decided to evaluate relaxin because the hormone is a powerful vasodilator. It was first identified in pregnant women but also occurs in men.

Prompted by the hormone's positive effects on the PKD animals, Ward and colleagues explored the differences in kidney gene expression between relaxin and control-treated rats. The results of the gene expression analysis suggested that relaxin, in part, affects genes associated with epithelial trafficking.

The researchers said that they hypothesize that relaxin's direct effect on signaling pathways of kidney fibroblasts and vascular cells improves the renal environment, indirectly affecting cystic epithelia and slowing cyst growth.

Explore further: Single gene controls development of many forms of polycystic disease

Related Stories

Single gene controls development of many forms of polycystic disease

June 19, 2011
A single gene is central in the development of several forms of polycystic kidney and liver disease, Yale School of Medicine researchers report in the June 19 issue of Nature Genetics.

Recommended for you

Molecular hitchhiker on human protein signals tumors to self-destruct

July 24, 2017
Powerful molecules can hitch rides on a plentiful human protein and signal tumors to self-destruct, a team of Vanderbilt University engineers found.

Researchers develop new method to generate human antibodies

July 24, 2017
An international team of scientists has developed a method to rapidly produce specific human antibodies in the laboratory. The technique, which will be described in a paper to be published July 24 in The Journal of Experimental ...

New vaccine production could improve flu shot accuracy

July 24, 2017
A new way of producing the seasonal flu vaccine could speed up the process and provide better protection against infection.

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.