Balancing the womb

December 21, 2011
Balancing the womb

(Medical Xpress) -- New research hopes to explain premature births and failed inductions of labour.

The study by academics at the University of Bristol suggests a new mechanism by which the level of myosin is regulated in the pregnant uterus. 

The researchers, Dr Claire Hudson and Professor Andrés López Bernal in the School of Clinical Sciences and Dr Kate Heesom in the University Proteomics Facility and the School of Biochemistry, have discovered that phosphorylation of uterus proteins at specific amino acids have a key role in the regulation of uterine activity in labour.

A remarkable feature of the uterus (the ) is that it remains relatively relaxed for the nine months of pregnancy, carrying the baby safely, and then, during labour, it contracts forcibly and the baby is born.  A special type of smooth muscle that grows and stretches during pregnancy to accommodate the fetus and the placenta forms the uterus. 

Hormones such as oxytocin or prostaglandins promote labour, but the biochemical changes that allow the switch from relaxation to contractions to happen are not fully understood.  This makes it difficult to predict when a woman is going to deliver.  In eight to ten per cent of women delivery occurs too early (preterm labour, before 37 weeks’ gestation) and prematurity is associated with major risks for the baby.  On the other hand when labour has to be induced for medical reasons, it is impossible to know whether the induction will be successful or whether it will require an emergency caesarean section with risks for the mother and baby.

Using small biopsies of uterine tissue from women who delivered at St Michael’s Hospital, Dr Hudson has demonstrated that contractions require both a calcium dependent pathway driven by myosin kinase and a calcium independent pathway that regulates the activity of myosin phosphatase. Additionally, Dr Hudson has pinpointed precisely the position of the amino acids in myosin and myosin phosphatase that are phosphorylated during cycles of contraction and relaxation of uterine smooth muscle.

Dr Claire Hudson said: “This study has increased our understanding of the biochemical changes underlying uterine activity and may help in the design of better drugs to prevent preterm labour or to induce labour successfully at term, benefiting many thousands of women and their babies.”

Andrés López Bernal, Professor of Human Reproductive Biology, added: “Our research will lead to better control of labour, whether stopping or starting it and it could be extended to the study of the non-pregnant uterus to improve our understanding of menstruation and to identify alterations responsible for painful periods or excessive menstrual blood loss.”

A key aspect of smooth muscle contractions is the phosphorylation (addition of phosphate) to certain muscle proteins called myosins, and is usually stimulated by increasing the level of calcium inside the cells. The balance of myosin phosphorylation and de-phosphorylation (removal of phosphate) is finely regulated by myosin kinases and phosphatases, respectively, and in pregnancy this equilibrium determines whether the uterus is relaxed or contracting.

Alterations in the kinase/phosphatase equilibrium and its regulation by calcium can make the uterus more sensitive to oxytocin and other hormones that trigger labour and provoke preterm birth.  On the other hand, alterations that favour relaxation may make the uterus contract poorly and result in failed induction of labour.

Explore further: Poorly contracting uterus in diabetic women increases risk of caesarean birth

More information: Phasic contractions-relaxations of isolated human myometrium are associated with Rho-kinase (ROCK)-dependent phosphorylation of myosin phosphatase targeting subunit (MYPT1). Claire A Hudson, Kate J Heesom, and Andrés López Bernal. Molecular Human Reproduction (MHR) first published online December 8, 2011 doi:10.1093/molehr/gar078

Related Stories

Poorly contracting uterus in diabetic women increases risk of caesarean birth

December 5, 2011
(Medical Xpress) -- Researchers at the University of Liverpool have found that the strength of uterine contractions in diabetic pregnant women is significantly weaker than in non-diabetic women, increasing the risk of emergency ...

Caesarean link to respiratory infections in babies

November 1, 2011
(Medical Xpress) -- A new study from Perth’s Telethon Institute for Child Health Research has found that babies born by elective caesarean are more likely to be admitted to hospital with the serious respiratory infection, ...

Recommended for you

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

Omega-3 fatty acids fight inflammation via cannabinoids

July 18, 2017
Chemical compounds called cannabinoids are found in marijuana and also are produced naturally in the body from omega-3 fatty acids. A well-known cannabinoid in marijuana, tetrahydrocannabinol, is responsible for some of its ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.