New way to learn about, potentially block traits in harmful pathogens

January 9, 2012
These are electron micrographs of Chlamydia mutant inside a of a cell. These particular mutant bacteria, colored red, are defective in secreting high levels of virulence proteins, seen here as the accumulating dark granules in between two bacterial membranes. Credit: Bidong Ngyuen, Duke Molecular Genetics and Microbiology

Researchers at Duke University Medical Center have developed a new way to identify the genes of harmful microbes, particularly those that have been difficult to study in the laboratory.

This new method uses chemicals to create , followed by genomic sequencing to identify all mutations. By looking for common genes that were mutated in Chlamydia sharing a particular trait, the investigators were able to rapidly "zero in" on the genes responsible for that trait.

The approach is versatile and inexpensive enough that it could be applied to study a range of , said Raphael Valdivia, Ph.D., an associate professor of and microbiology at Duke.

"We were able to learn about genes that allow Chlamydia to flourish in their hosts without the traditional, lengthy process of domesticating the pathogen to accept recombinant DNA," Valdivia said. "Our approach marries classical microbiology techniques with 21st century genome-sequencing technologies. If you encounter a new dangerous microorganism and want to determine what genes are important, I think this represents an effective way to learn all we can, as fast as we can."

One of the goals in studying microbial pathogens that harm humans and animals is to locate and disrupt the genes required for infection, Valdivia said.

The microbe in this study, Chlamydia, is usually sexually transmitted, hides in , and is a type of bacteria that must cause disease to be transmitted from one host to another. Chlamydia is the leading sexually transmitted infection and a risk factor for and infertility.

Prior to this work, the function of many Chlamydia genes had to be inferred by their similarity to genes from other bacteria. "By isolating mutants that don't grow well inside cells and identifying the underlying mutations, we can learn a lot about how these genes contribute to disease," Valdivia said. "These are the activities we'd like to block."

"For us, this significantly accelerates the analysis of Chlamydia and importantly, should be applicable to many other microbes that have been difficult manipulate with recombinant DNA approaches," he said. Valdivia suggested that even associated with our normal intestinal flora, which are notoriously difficult to manipulate, are now open to exploration so that we can learn how their genes influence human health, including dietary disorders and inflammatory bowel disease.

The work was published on Jan. 9 in the early edition of the Proceedings of the National Academy of Sciences.

Valdivia also said that the new technique could help to create vaccines that have a combination of mutations that affect the pathogen's virulence. "That way we can cripple some aspects of the bacterium's ability to thrive intact in a host, while still allowing the bacterium to replicate enough to prime the immune system against it."

Explore further: Newly designed molecule blocks chlamydia bacteria

Related Stories

Newly designed molecule blocks chlamydia bacteria

July 20, 2011
Researchers at Duke University Medical Center have discovered a way to block the damaging actions of Chlamydia, the bacteria responsible for the largest number of sexually transmitted infections in the United States.

Scientists find method to probe genes of the most common bacterial STI

April 11, 2011
In a new study from the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, scientists describe successfully mutating specific genes of Chlamydia bacteria, which cause ...

Surprising find helps explain why women get chronic chlamydia infections

June 23, 2011
(Medical Xpress) -- Researchers at Duke University Medical Center used mice to learn why genital Chlamydia infection remains chronic in women. The findings have important implications for developing strategies to treat Chlamydia ...

Chlamydia utilizes Trojan horse tactics to infect cells

October 6, 2011
A novel mechanism has been identified in which Chlamydia trachomatis tricks host cells into taking up the bacteria. Researchers from University of California San Francisco, led by Joanne Engel, report their findings in the ...

New Chlamydia test shows type of infection

May 24, 2011
A new Chlamydia test can quickly and easily demonstrate the subtype (serovar) of the bacterium Chlamydia trachomatis a person is infected with. This has important clinical implications, because some Chlamydia subtypes, that ...

Recommended for you

Research examines lung cell turnover as risk factor and target for treatment of influenza pneumonia

July 24, 2017
Influenza is a recurring global health threat that, according to the World Health Organization, is responsible for as many as 500,000 deaths every year, most due to influenza pneumonia, or viral pneumonia. Infection with ...

Scientists propose novel therapy to lessen risk of obesity-linked disease

July 24, 2017
With obesity related illnesses a global pandemic, researchers propose in the Journal of Clinical Investigation using a blood thinner to target molecular drivers of chronic metabolic inflammation in people eating high-fat ...

Raccoon roundworm—a hidden human parasite?

July 24, 2017
The raccoon that topples your trashcan and pillages your garden may leave more than just a mess. More likely than not, it also contaminates your yard with parasites—most notably, raccoon roundworms (Baylisascaris procyonis).

Google searches can be used to track dengue in underdeveloped countries

July 20, 2017
An analytical tool that combines Google search data with government-provided clinical data can quickly and accurately track dengue fever in less-developed countries, according to new research published in PLOS Computational ...

MRSA emerged years before methicillin was even discovered

July 19, 2017
Methicillin resistant Staphylococcus aureus (MRSA) emerged long before the introduction of the antibiotic methicillin into clinical practice, according to a study published in the open access journal Genome Biology. It was ...

New test distinguishes Zika from similar viral infections

July 18, 2017
A new test is the best-to-date in differentiating Zika virus infections from infections caused by similar viruses. The antibody-based assay, developed by researchers at UC Berkeley and Humabs BioMed, a private biotechnology ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.