Researchers discover protein that may represent new target for treating type 1 diabetes

January 4, 2012

Researchers at Wake Forest Baptist Medical Center's Institute for Regenerative Medicine and colleagues have discovered a new protein that may play a critical role in how the human body regulates blood sugar levels. Reporting in the current issue of Pancreas, the research team says the protein may represent a new target for treating type 1 diabetes.

"This data may change the current thinking about what causes ," said Bryon E. Petersen, Ph.D., professor of regenerative medicine and senior author. "Much more research is needed to understand exactly how the protein functions, but its discovery opens a new door to better understand and hopefully develop new treatments for this currently ."

The protein, which the scientists have named Islet Homeostasis Protein (IHoP), has so far been isolated in the of both humans and rodents. It is located in the pancreatic islets, clusters of cells that secrete the hormones insulin and glucagon that work together to regulate blood sugar. In healthy individuals, glucagon raises blood sugar levels and insulin helps lower gluocose levels by moving sugar from the blood into the body's cells. In people with type 1 diabetes, which affects about 5 percent of people with diabetes, the pancreas does not produce enough insulin and blood sugar levels are too high.

The researchers determined that IHoP is found within the glucagon-producing cells of the islets. In both humans and that haven't yet developed diabetes, the researchers found high levels of IHoP. But after the onset of diabetes, there was no expression of IHoP, suggesting that the protein may work to regulate by regulating the balance between insulin and glucagon.

When the researchers inhibited production of the protein in rodents, there was loss of glucagon expression, which caused a chain of events that led to decreased insulin, increased levels of glucagon and death of insulin-producing cells.

"In a nutshell," said lead author Seh-Hoon Oh, Ph.D., "IHoP appears to keep blood sugar regulation in check. When IHoP isn't present, it throws the pancreas into a critical state and starts the process that results in type 1 diabetes." Oh is an instructor of regenerative medicine at Wake Forest Baptist.

It is currently believed that type 1 diabetes is caused by a viral or environmental trigger in genetically susceptible people that results in the body's white cells mistakenly attacking the insulin producing cells. Within 10 to 15 years of diagnosis, the insulin-producing cells are completely destroyed.

The current research supports the idea that cell death plays a role in type 1 diabetes, but the results suggest that IHoP may influence the process. Next steps in the research will be to explore how IHoP controls the interaction of insulin and .

Explore further: Connexins: Providing protection to cells destroyed in Type 1 diabetes

Related Stories

Connexins: Providing protection to cells destroyed in Type 1 diabetes

November 7, 2011
Type 1 diabetes is a lifelong disease characterized by high levels of sugar (glucose) in the blood. It is caused by the patient's immune system attacking and destroying the cells in their pancreas that produce the hormone ...

Recommended for you

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.