In schizophrenia research, a path to the brain through the nose

January 25, 2012

A significant obstacle to progress in understanding psychiatric disorders is the difficulty in obtaining living brain tissue for study so that disease processes can be studied directly. Recent advances in basic cellular neuroscience now suggest that, for some purposes, cultured neural stem cells may be studied in order to research psychiatric disease mechanisms. But where can one obtain these cells outside of the brain?

Increasingly, schizophrenia research is turning to the nose. Strange as it may seem, the idea makes sense because the olfactory mucosa, the sense organ of smell in the nose, is continually regenerating new from "adult" stem cells. These neurons are among the very few outside of the skull that connect directly to nerve cells in the brain.

Over several decades, researchers found that these cells can be collected directly by obtaining a small tissue sample, called a biopsy. By taking small pieces of olfactory tissue from the nose, researchers of this new study were able to gain access to the stem cells from patients with schizophrenia and compare them to cells from healthy individuals.

"We have discovered that patient cells proliferate faster - they are running with a faster speed to their clock controlling the cell cycle - and we have identified some of the molecules that are responsible," explained Dr. Alan Mackay-Sim from the National Centre for Adult Stem Cell Research in Brisbane, Australia, an author of the study. The findings clearly indicate that the natural cell cycle is dysregulated in individuals diagnosed with schizophrenia.

"This is a first insight into real differences in patient cells that could lead to slightly altered brain development," Mackay-Sim added. This is an important finding, as scientists are already aware of many developmental abnormalities in the 'schizophrenia brain'.

Dr. John Krystal, editor of , commented: "The current findings are particularly interesting because when we look closely at the clues to the neurobiology of psychiatric disorders, we find new and often unexpected mechanisms implicated."

Explore further: Neuroscientists find genetic trigger that makes stem cells differentiate in nose epithelia

More information: The article is "Altered Cell Cycle Dynamics in Schizophrenia" by Yongjun Fan, Greger Abrahamsen, John J. McGrath, and Alan Mackay-Sim (doi: 10.1016/j.biopsych.2011.10.004). The article appears in Biological Psychiatry, Volume 71, Issue 2 (January 15, 2012)

Related Stories

Neuroscientists find genetic trigger that makes stem cells differentiate in nose epithelia

December 7, 2011
University of California, Berkeley, neuroscientists have discovered a genetic trigger that makes the nose renew its smell sensors, providing hope for new therapies for people who have lost their sense of smell due to trauma ...

Recommended for you

Babies can learn that hard work pays off

September 21, 2017
If at first you don't succeed, try, try again. A new study from MIT reveals that babies as young as 15 months can learn to follow this advice. The researchers found that babies who watched an adult struggle at two different ...

Study links brain inflammation to suicidal thinking in depression

September 21, 2017
Patients with major depressive disorder (MDD) have increased brain levels of a marker of microglial activation, a sign of inflammation, according to a new study in Biological Psychiatry by researchers at the University of ...

Oxytocin turns up the volume of your social environment

September 20, 2017
Before you shop for the "cuddle" hormone oxytocin to relieve stress and enhance your social life, read this: a new study from the University of California, Davis, suggests that sometimes, blocking the action of oxytocin in ...

Researchers develop new tool to assess individual's level of wisdom

September 20, 2017
Researchers at University of San Diego School of Medicine have developed a new tool called the San Diego Wisdom Scale (SD-WISE) to assess an individual's level of wisdom, based upon a conceptualization of wisdom as a trait ...

Alcohol use affects levels of cholesterol regulator through epigenetics

September 20, 2017
In an analysis of the epigenomes of people and mice, researchers at Johns Hopkins Medicine and the National Institutes of Health report that drinking alcohol may induce changes to a cholesterol-regulating gene.

Self-control may not diminish throughout the day

September 20, 2017
After a long day of work and carefully watching what you eat, you might expect your self-control to slip a little by kicking back and cracking open a bag of potato chips.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.