New ability to regrow blood vessels holds promise for treatment of heart disease

February 13, 2012, University of Texas at Austin
Aaron Baker is an assistant professor in the Department of Biomedical Engineering.

(Medical Xpress) -- University of Texas at Austin researchers have demonstrated a new and more effective method for regrowing blood vessels in the heart and limbs — a research advancement that could have major implications for how we treat heart disease, the leading cause of death in the Western world.

The treatment method developed by Cockrell School of Engineering Assistant Professor Aaron Baker could allow doctors to bypass surgery and instead repair damaged blood vessels simply by injecting a lipid-incased substance into a patient. Once inside the body, the substance stimulates cell growth and spurs the growth of new blood vessels from pre-existing ones.

The method has been tested successfully on rats, and findings of the study were published recently in the Proceedings of the National Academy of Sciences.

"Others have tried using growth factors to stimulate vessel growth in clinical trials and have not been successful," said Baker, a faculty member in the school’s Department of Biomedical Engineering. "We think that a major reason for this is that previous methods assumed that the diseased tissues retained the ability to respond to a growth stimulus. Our method basically delivers extra components that can restore responsiveness to the tissue of patients with long-standing clinical disease."

The ability to regrow blood vessels could prove crucial to treating chronic myocardial ischemia disease, which affects up to 27 million patients in the U.S. and leads to a reduction of blood flow in the heart and lower limbs — ultimately causing organ dysfunction and failure.

Hindlimb ischemia was created in rats and treatments were delivered over seven days with an osmotic pump. The laser doppler imaging above shows the rat's hind limb prior to treatment (on the left) and with increased blood flow (image on the right) just seven days after treatment.

Central ischemia, which affects the heart, occurs when the coronary vessels that feed blood to the heart become blocked or narrow because of a buildup of fatty deposits called plaques. Such plaques are typically the result of a prolonged unhealthy diet or smoking, and factors such as age, high blood pressure and diabetes increase the risks of the disease, Baker said.

Doctors have typically treated ischemia by physically opening the closed artery with a stent or surgically rerouting blood flow to the poorly perfused tissue. Both methods have limitations, however, and are not effective long-term.

The new method introduced by Baker and his research team builds on a promising revascularization approach that, up until now, has shown limited efficacy in clinical trials for treating human disease.

The method combines a growth factor — a substance capable of stimulating cellular growth, proliferation and cellular differentiation, as well as healing wounds — known as fibroblast growth factor 2 (FGF-2) with a lipid-embedded receptor to enhance its activity.

A challenge for scientists and engineers, however, has been getting FGF-2 to bind with cell receptors — the very molecules often found on the surface of the cell that receive chemical signals and direct activity in the cell from outside sources.

To overcome this, Baker's method embeds the growth factors in synthetic lipid-based nanoparticles containing a coreceptor known as syndecan-4. The nanoparticles containing co-receptors that, when delivered with the growth factor, enable improved cell binding so that the growth factor can direct the targeted cell to divide, proliferate and form new cells for tissue regrowth.

The incased substance was injected into rats with hindlimb ischemia and stimulated a complete recovery from the ischemia in just seven days.

"We hope this research will increase our understanding of how tissues become resistant to revascularization therapies and may lead to more effective treatments for this widespread and debilitating disease," said Baker, who was recognized last year with the National Institutes of Health Director's New Innovator Award.

Designed to support unusually creative new investigators with highly innovative research ideas at an early stage of their careers, the award provides Baker with $1.5 million over five years to study and develop ways to regrow small . With it, Baker is studying why previous attempts to restore blood flow to the have not been effective. His research aims to design new molecular tools and drug delivery methods to enable blood vessel growth in patients with diseases such as diabetes.

Explore further: Regrowing blood vessels with a potent molecule

Related Stories

Regrowing blood vessels with a potent molecule

August 2, 2011
(Medical Xpress) -- Ever since the Nobel Prize for nerve growth factor was awarded more than 30 years ago, researchers have been searching for ways to use growth factor clinically.

New strategy to accelerate blood vessel maturation has therapeutic potentials for ischemic diseases

October 11, 2011
Belgian researchers describe a new mechanism to enhance the restoration of the blood flow in ischemic diseases, which are among the leading causes of death worldwide. The team of Massimiliano Mazzone demonstrates that blocking ...

Molecular imaging detects ischemic heart disease in diabetics

June 6, 2011
Research introduced at SNM's 58th Annual Meeting may lead to much-needed cardiovascular disease screening for diabetic patients at risk of ischemic heart disease, a disorder marked by significantly reduced blood flow in the ...

Successful strategy developed to regenerate blood vessels

April 17, 2011
Researchers at The University of Western Ontario have discovered a strategy for stimulating the formation of highly functional new blood vessels in tissues that are starved of oxygen. Dr. Geoffrey Pickering and Matthew Frontini ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

bcode
1 / 5 (1) Feb 13, 2012
I'm confused... How does increasing the number of blood cells counteract the plaque that is blocking the pathway?
tpb
not rated yet Feb 13, 2012
He's building new blood vessels, not blood cells.
bcode
1 / 5 (1) Feb 13, 2012
Ah, yes -- poor choice of words on my part.

So, as you said, he's building new blood vessels -- but how does making the clogged Artery, Vein or Capillary replicate deal with the plaque that's blocking the pathway?

Are they suggesting that they will remove the blocked section and use this method to encourage the patients blood vessels to grow back? That seems unfeasible for the larger vessels that we depend on for survival (heart valves, major arteries, etc)... Even if it only takes 7 days.
dogbert
1 / 5 (1) Feb 14, 2012
They are encouraging the body to naturally bypass the blocked blood vessels. This happens naturally in some cases. They propose to increase the incidence of natural bybass.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.