Antisense oligonucleotides make sense in myotonic dystrophy

February 27, 2012

Antisense oligonucleotides – short segments of genetic material designed to target specific areas of a gene or chromosome – that activated an enzyme to "chew up" toxic RNA (ribonucleic acid) could point the way to a treatment for a degenerative muscle disease called myotonic dystrophy, said researchers from Baylor College of Medicine and Isis Pharmaceuticals, Inc., in a report in the journal Proceedings of the National Academy of Sciences.

"This is a proof-of-principle therapy that is very effective in cell culture and mice," said Dr. Thomas A. Cooper, professor of pathology and immunology and molecular and cellular biology at BCM and the report's corresponding author. "The treatment will have to be refined to deliver systemically in people with myotonic dystrophy."

Myotonic dystrophy is the most common muscular disease in adults, affecting mainly the skeletal muscles, heart and central nervous system. It occurs because of a mutation that causes numerous repeats of three letters of the genetic code (CTG) in a gene called DMPK. RNA is made as a step in the cell's production of the protein associated with the gene. The messenger RNA (the chemical blueprint for making a protein) that is produced from the mutated gene also contains the abnormal long repeats that cause the RNA to accumulate in the cell's nucleus. There it sequesters and blocks the function of a protein called Muscleblind-like 1 and activates another protein called CELF1. These proteins antagonize one another and the result is abnormal expression of proteins from many other genes in adult tissues, resulting in disease.

To counteract this, Cooper and his colleagues created antisense oligonucleotides called gapmers, which are simply strands of genetic material that seek out portions of the abnormal RNA repeats and target an enzyme called RNase H to the toxic RNA causing its degradation. They also showed that combining the gapmers with other antisense oligonucleotides that help released the sequestered Muscleblind-like1 can enhance the effect.

"It worked in cultures of cells with the expanded repeats and in mice that model ," said Cooper. "We did it in skeletal muscle first because we can inject the material directly into the muscle."

Later, he plans to determine if the material also works in the animals' hearts.

Using the treatment in people will require more fine-tuning, said Cooper. He would like to be able to give the therapy systemically rather than directly into the muscle. They saw some muscle damage and inflammation in the animals they treated.

Antisense oligonucleotide treatments are being tested in Duchenne muscular dystrophy and another disease called spinal muscular atrophy, said Cooper.

Explore further: Scientists find another clue to the origins of degenerative diseases

Related Stories

Scientists find another clue to the origins of degenerative diseases

April 11, 2011
For years, researchers in genome stability have observed that several neurodegenerative diseases—including Huntington's disease—are associated with cell-killing proteins that are created during expansion of a CAG/CTG ...

Some muscular dystrophy patients at increased risk for cancer

December 13, 2011
People who have the most common type of adult muscular dystrophy also have a higher risk of getting cancer, according to a paper published today in the Journal of the American Medical Association.

Recommended for you

Exploring disease predisposition to deliver personalized medicine

October 23, 2017
Geneticists from the University of Geneva have taken an important step towards true predictive medicine. Exploring the links between diseases and tissue-specific gene activity, they have been able to build a model that constitutes ...

Maternal diet may program child for disease risk, but better nutrition later can change that

October 20, 2017
Research has shown that a mother's diet during pregnancy, particularly one that is high-fat, may program her baby for future risk of certain diseases such as diabetes. A new study from nutrition researchers at the University ...

New gene editing approach for alpha-1 antitrypsin deficiency shows promise

October 20, 2017
A new study by scientists at UMass Medical School shows that using a technique called "nuclease-free" gene editing to correct cells with the mutation that causes a rare liver disease leads to repopulation of the diseased ...

Researchers find evidence of DNA damage in veterans with Gulf War illness

October 19, 2017
Researchers say they have found the "first direct biological evidence" of damage in veterans with Gulf War illness to DNA within cellular structures that produce energy in the body.

Researchers drill down into gene behind frontotemporal lobar degeneration

October 19, 2017
Seven years ago, Penn Medicine researchers showed that mutations in the TMEM106B gene significantly increased a person's risk of frontotemporal lobar degeneration (FTLD), the second most common cause of dementia in those ...

Genetic variants associated with obsessive-compulsive disorder identified

October 18, 2017
(Medical Xpress)—An international team of researchers has found evidence of four genes that can be linked to obsessive-compulsive disorder (OCD). In their paper published in the journal Nature Communications, the group ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.