Cell signaling discovery provides new hope for blood disorders

February 16, 2012, Walter and Eliza Hall Institute

Walter and Eliza Hall Institute scientists have revealed new details about how cell signalling is controlled in the immune system, identifying in the process potential new therapeutic targets for treating severe blood disorders.

Dr Jeff Babon and Professor Nick Nicola, from the institute's and Cancer and Haematology divisions respectively, study interactions between internal cell signalling proteins called JAKs (Janus kinases) and SOCS (Suppressors of Cytokine Signalling).

Dr Babon said the proteins were essential for maintenance and immune responses.

"JAK proteins are activated in response to blood cell hormones called cytokines and instruct to respond to infection and inflammation," Dr Babon said. "SOCS proteins were discovered at the institute in the early 2000s, and provide a necessary 'negative feedback' response that stops JAKs becoming overactive, which can lead to disease."

Dr Babon said mutations in one particular protein, , are strongly associated with the development of myeloproliferative diseases.

"When JAK2 is mutated, it tells cells to continually multiply. An excessive amount of blood cells of one type are produced, and the bone marrow is overrun, leading to problems with production of other cell types, and eventually ," Dr Babon said.

Myeloproliferative diseases, such as polycythemia vera and essential thrombocytopenia, are serious in which an excessive number of accumulate in the bone marrow. They can be very severe and sometimes fatal, and may progress to acute leukaemias.

In a study published today in the journal Immunity, Dr Babon and Professor Nicola, with colleagues Dr James Murphy and Dr Nadia Kershaw, report on a key discovery about how the proteins JAK2 and SOCS3 interact. They hope the discovery will lead to new strategies for treating myeloproliferative diseases.

"SOCS3 is a key inhibitor of JAK2 proteins in blood and immune cells, but we didn't know exactly how the two proteins interacted to suppress JAK2 function," Dr Babon said. "We wanted to identify which site the SOCS3 protein bound to on the JAK2 protein to inhibit its action, and were surprised to find that SOCS3 binds to a unique site on JAK2 and directly inhibits the protein, rather than outcompeting other molecules."

Dr Babon said the finding could inspire a new class of therapeutic agents for treating myeloproliferative diseases.

"The SOCS3 binding site is a previously unknown part of the JAK2 protein which could be exploited as a drug target, with greater specificity than other drugs that are currently in clinical trials for inhibiting JAK2," he said.

Explore further: Surprise finding redraws 'map' of blood cell production

Related Stories

Surprise finding redraws 'map' of blood cell production

January 31, 2012
A study of the cells that respond to crises in the blood system has yielded a few surprises, redrawing the 'map' of how blood cells are made in the body.

Genetic finding offers hope for orphan disease

June 22, 2011
New research conducted at UNC Lineberger Comprehensive Cancer Center, offers hope for people with a rare disorder called Chuvash polycythemia.

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.