A new EEG shows how brain tracts are formed

February 18, 2012, University of Helsinki

In the past few years, researchers at the University of Helsinki have made several breakthroughs in discovering how the brain of preterm babies work, in developing treatments to protect the brain, and in developing research methods suitable for hospital use.

Each year, the brains of hundreds of Finnish children, and therefore their future lives, are at risk due to or intrapartum asphyxia. The is a sensitive organ, and merely keeping the baby alive is not enough to save the brain. The latest scientific achievements offer significant improvements in the and lives of infants.

"When developing brain treatment, a key challenge is to find ways to study and monitor the well-being of the brain in the neonatal environment," says Sampsa Vanhatalo, Docent of Pediatric Clinical Neurophysiology.

The R & D work carried out in the basic neurobiology laboratory in the University of Helsinki has provided a whole new level of insight into the electrical activity of the brain in newborns. Now we know that many previously unexplained brain events seen in an EEG are essential for the development and maturation of the brain in premature babies, Dr. Vanhatalo states.

These findings have provided an opportunity to develop monitoring devices to monitor the well-being of infant brains during ICU treatment. The University of Helsinki and the Unit of the Children's Hospital, Helsinki University Central Hospital (HUCH) have attracted considerable international attention for their novel EEG techniques that enable exceptionally precise measurement of EEG in premature infants.

"These dense array EEG caps and the related full-band EEG (FbEEG) that we have developed have disclosed crucial forms of newborn brain activity that have so far been overlooked. We have also developed a method to study sensory functions of premature babies when the tracts are still in the process of forming in the brain and the yield of a traditional neurological examination is still negligible," explains Dr. Vanhatalo.

The research work carried out in Helsinki has been adapted elsewhere in the world with exceptional speed: the largest device manufacturers are already offering FbEEG devices, and dense array EEG caps are already being manufactured industrially. These devices have been clinically approved in the EU (CE certificate) and in the USA (FDA).

"Multi-modal EEG analysis of newborns may help us to recognize the children in need of immediate care or neurological rehabilitation early on, as . Today, often the diagnosis cannot be made until the child is a toddler. It is critical for the development and quality of a child's life that appropriate treatment and rehabilitation is started as soon as possible," says Dr. Vanhatalo.

In the Journal of Visualized Experiments (JoVE), Finnish researchers demonstrate the developed method and show how it can be applied safely and without disturbing other treatments in an NICU. JoVE is the only scientific journal in the world that publishes all its articles in both text and video format.

Explore further: New method of infant pain assessment

Related Stories

New method of infant pain assessment

December 21, 2011
Recently, the accuracy of current methods of pain assessment in babies have been called into question. New research from London-area hospitals and the University of Oxford measures brain activity in infants to better understand ...

Babies distinguish pain from touch at 35-37 weeks

September 8, 2011
Babies can distinguish painful stimuli as different from general touch from around 35-37 weeks gestation – just before an infant would normally be born – according to new research.

Enzyme controlling cell death paves way for treatment of brain damage in newborns

October 25, 2011
where the brain is starved of oxygen around the time of delivery – is normally treated by cooling the infant, but this only helps one baby in nine. New research from the Sahlgrenska Academy at the University of Gothenburg, ...

Recommended for you

Even without nudging blood pressure up, high-salt diet hobbles the brain

January 16, 2018
A high-salt diet may spell trouble for the brain—and for mental performance—even if it doesn't push blood pressure into dangerous territory, new research has found.

Brain imaging predicts language learning in deaf children

January 15, 2018
In a new international collaborative study between The Chinese University of Hong Kong and Ann & Robert H. Lurie Children's Hospital of Chicago, researchers created a machine learning algorithm that uses brain scans to predict ...

Preterm babies may suffer setbacks in auditory brain development, speech

January 15, 2018
Preterm babies born early in the third trimester of pregnancy are likely to experience delays in the development of the auditory cortex, a brain region essential to hearing and understanding sound, a new study reveals. Such ...

BOLD view of white matter

January 15, 2018
The brain consists of gray matter, which contains the nerve cell bodies (neurons), and white matter, bundles of long nerve fibers (axons) that until recently were considered passive transmitters of signals between different ...

Does an exploding brain network cause chronic pain?

January 12, 2018
A new study finds that patients with fibromyalgia have brain networks primed for rapid, global responses to minor changes. This abnormal hypersensitivity, called explosive synchronization (ES), can be seen in other network ...

An innovative PET tracer can measure damage from multiple sclerosis in mouse models

January 12, 2018
The loss or damage of myelin, a cellular sheath that surrounds and insulates nerves, is the hallmark of the immune-mediated neurological disorder multiple sclerosis (MS). When segments of this protective membrane are damaged, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.