Smallest tools could give biggest results in bone repair

February 6, 2012

When William Murphy works with some of the most powerful tools in biology, he thinks about making tools that can fit together. These constructions sound a bit like socket wrenches, which can be assembled to turn a half-inch nut in tight quarters, or to loosen a rusted-tight one-inch bolt using a very persuasive lever.

The tools used by Murphy, an associate professor of biomedical engineering and orthopedics and rehabilitation at University of Wisconsin-Madison, however, are proteins, which are vastly more flexible than socket wrenches -- and roughly 100 million times smaller. One end of his modular tool may connect to bone, while the other end may stimulate the growth of bone, blood vessels or cartilage.

On February 4th and 6th, at the Society meeting in San Francisco, Darilis Suarez-Gonzalez and Jae Sung Lee of the Murphy lab are reporting that "dip-coated" with modular can stimulate bone and in sheep.

For many years, medical scientists have been fascinated by growth factors -- proteins that can stimulate tissues to grow. But these factors can be too effective or not specific enough, leading to cancer rather than the controlled growth needed for healing.

Murphy wants to start applying the manifold benefits of the modular approach to healing or regenerating bone, tendon, and ligaments, and in particular to replacement surgery after an artificial joint has loosened or failed. Temporarily stimulating bones to grow by placing growth factors near the new implant could shorten and ensure a good, tight fit.

The approach could also be used for reattaching ligaments to bone after sports injuries and healing large bone defects during spinal fusion, or trauma. In this work, Murphy collaborates with two associate professors of orthopedics and rehabilitation at the School of Medicine and Public Health. "Ben Graf focuses on in ," he says, "and David Goodspeed, a lieutenant colonel in the Army who has seen blast injuries during multiple tours in Iraq, is working on the kind of major traumatic wound we think is potentially treatable using this approach."

The working end of the modular structure may feature a fragment of a growth factor, but not the entire protein. "Often, you just want the specific regions that activate the signaling pathways, because that can reduce the chances of stimulating unwanted growth, even cancer," he says.

At the other end, Murphy may place an anchoring molecule that binds to the bone and prevents the modular structure from migrating away from the wound.

With the modular approach, he says, "you might be able to stimulate bone formation without the side effects. We are trying to decrease stimulation outside of the bone defect, trying to design these molecules to specifically generate new bone in a defect, and to stay there."

Animal tests, performed in collaboration with Mark Markel, a professor of veterinary medicine, have shown that the bone is denser around the implant, and that the union between the implant and the bone is stronger than produced by state-of-the-art orthopedic techniques. The added growth factors have not been detected elsewhere in the animal, Murphy says.

Engineering each section of the molecule separately allows their properties to be tailored as needed. "We can take similar protein structures and modulate them," Murphy says. "If we want a molecule that binds very strongly to the surface of a graft, we can do that. If we want one that releases over controllable time-frames, we can do that as well."

Moving from the lab to the clinic is a major step, and Murphy knows that many hurdles remain. "We have shown that this can work in a large, clinically relevant animal model, but realistically, I don't see this being used in the clinic within the next five years."

Murphy says his approach is inspired by biology without trying to exactly duplicate normal communication between cells and tissues. "We are not interested in specifically mimicking a particular structure or function, but nature uses a variety of fundamental mechanisms during development and regeneration, and we are taking lessons from them and designing synthetic systems to achieve similar outcomes. We are not repeating nature, but we are inspired by nature."

Explore further: It's all in the wrapping: Mimicking periosteum to heal traumatic bone injury

Related Stories

It's all in the wrapping: Mimicking periosteum to heal traumatic bone injury

December 13, 2011
A manmade package filled with nature's bone-building ingredients delivers the goods over time and space to heal serious bone injuries faster than products currently available, Cleveland researchers have found.

Mechanical stress can help or hinder wound healing depending on time of application

October 24, 2011
A new study demonstrates that mechanical forces affect the growth and remodeling of blood vessels during tissue regeneration and wound healing. The forces diminish or enhance the vascularization process and tissue regeneration ...

Recommended for you

Link between cells associated with aging and bone loss

August 21, 2017
Mayo Clinic researchers have reported a causal link between senescent cells - the cells associated with aging and age-related disease - and bone loss in mice. Targeting these cells led to an increase in bone mass and strength. ...

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.