Study tracks down cause of birth defect

February 13, 2012, University of Southern California

A USC research team has pinpointed the source of a genetic disorder that causes life-threatening birth defects, which may allow doctors to quickly diagnose and better treat the disease.

Babies born with the disorder, known as Loeys-Dietz syndrome or Marfan syndrome type II, have cleft and other similar to born with other diseases – but also happen to suffer potentially fatal heart defects, making it critical for them to receive an accurate diagnosis right away.

Researchers from USC found an abnormally high amount of a protein known as Transforming Growth Factor Beta (TGF-β) outside of cells – which may be revealed by a blood or tissue test – in patients with characteristic facial defects is a key indicator of Loeys-Dietz.

"If we can screen patients for this, it can identify Loeys-Dietz syndrome and inform clinical practice," said Yang Chai, director for the USC Center for Craniofacial Molecular Biology and corresponding author of the study. "And perhaps, one day we can manipulate the amount [of TGF-β] and possibly rescue the cleft palate before a baby is born. The prospects of this are very promising."

Led by senior post-doctoral fellow Junichi Iwata of the Ostrow School of Dentistry at USC, researchers made their discovery by studying the fetal development of mice. They found that mutations that affect the way TGF-β communicates outside of a cell may cause Loeys-Dietz syndrome.

TGF-β controls many of the functions within a cell, and is known to be heavily involved in the palate's formation - or failure to form. Typically, it uses a receptor protein known as TGFBR2 to communicate outside of the cell. However, if a mutation causes a roadblock on that communication highway, TGF-β may rely on surface streets to get its signal out.

In clinical studies, the activation of this separate signaling pathway resulted in palate and facial defects akin to Loeys-Dietz syndrome. A telltale sign of the alternate pathway's activity is an abnormally high amount of TGF-β outside of the cell.

Also, additional genetic defects in the alternate pathway led to a disruption in its signaling, which lowered the amount of TGF-β outside of the cell and rescued the palate and facial deformities – essentially correcting the defects before birth with no other intervention.

Explore further: Regulating nuclear signalling in cancer

More information: The work was published on February 13 in the Journal of Clinical Investigation.

Related Stories

Regulating nuclear signalling in cancer

August 4, 2011
Research findings published recently in Nature Communications describe a completely new way in which TGFβ receptors regulate nuclear signalling. The findings are significant given that this new signalling pathway seems ...

Recommended for you

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.