Researchers discover way to block body's response to cold

March 1, 2012, St. Joseph's Hospital and Medical Center

Researchers at St. Joseph's Hospital and Medical Center in Phoenix, Arizona, in collaboration with Amgen Inc. and several academic institutions, have discovered a way to block the body's response to cold using a drug. This finding could have significant implications in treating conditions such as stroke and cardiac arrest.

The research, led by Andrej Romanovsky, MD, PhD, Director of the Laboratory (FeverLab), which is a part of St. Joseph's Trauma Research program, was published in the Feb. 8 issue of the Journal of Neuroscience. The groundbreaking discovery has also been highlighted in Scientific American.

Lowering the body's temperature is an effective way to treat certain conditions because of the body's decreased need for at low temperatures. However, natural defense mechanisms to maintain a steady temperature – such as shivering, vasoconstriction and heat generation by brown adipose tissue – can make it difficult to lower body temperature in unanesthetized patients. Dr. Romanovsky and his team believe they have discovered a pharmacological method to inhibit these natural defense mechanisms.

Their research focuses on the TRPM8 (transient receptor potential melastatin-8 channel) receptor, a protein responsible for the sensation of feeling cold, and on M8-B, a drug that acts as a TRPM8 antagonist. Dr. Romanovsky's team discovered that M8-B inhibited multiple cold-defense mechanisms in mice and rat models. This TRPM8-antagonist-induced hypothermia is the first example of a change in the deep body temperature of an animal occurring as a result of the documented pharmacological blockade of temperature signals at the thermoreceptor level.

"Humans have used the same mechanisms to defend themselves against cold since the days of the caveman," says Dr. Romanovsky. "Our study is significant because it is the first time we have been able to block the body's natural defense mechanisms using a selective pharmacological antagonist. We believe that this approach will be used in the future to induce mild therapeutic hypothermia in unanesthetized patients, as well as to maintain deep body temperature, and perhaps the activity of some thermoeffectors, at desired levels."

Dr. Romanovsky also believes that this finding is the beginning of thermopharmacology, a new discipline that uses drugs to block temperature signals that the body receives from the environment and thus to alter body temperature for treating specific conditions.

Explore further: New findings on therapeutic hypothermia following cardiac arrest in children

Related Stories

New findings on therapeutic hypothermia following cardiac arrest in children

July 29, 2011
New Rochelle, NY, July 29, 2011–Intravenous delivery of cold fluids to reduce body temperature quickly after a heart attack and improve neurologic outcomes may not be as effective in children as it is in adults, according ...

Recommended for you

New neurons in the adult brain are involved in sensory learning

February 23, 2018
Although we have known for several years that the adult brain can produce new neurons, many questions about the properties conferred by these adult-born neurons were left unanswered. What advantages could they offer that ...

Study in mice suggests personalized stem cell treatment may offer relief for multiple sclerosis

February 22, 2018
Scientists have shown in mice that skin cells re-programmed into brain stem cells, transplanted into the central nervous system, help reduce inflammation and may be able to help repair damage caused by multiple sclerosis ...

Nolan film 'Memento' reveals how the brain remembers and interprets events from clues

February 22, 2018
Key repeating moments in the film give viewers the information they need to understand the storyline. The scenes cause identical reactions in the viewer's brain. The results deepen our understanding of how the brain functions, ...

Biomarker, clues to possible therapy found in novel childhood neurogenetic disease

February 22, 2018
Researchers studying a rare genetic disorder that causes severe, progressive neurological problems in childhood have discovered insights into biological mechanisms that drive the disease, along with early clues that an amino ...

A look at the space between mouse brain cells

February 22, 2018
Between the brain's neurons and glial cells is a critical but understudied structure that's been called neuroscience's final frontier: the extracellular space. With a new imaging paradigm, scientists can now see into and ...

Schizophrenia a side effect of human development

February 21, 2018
Schizophrenia may have evolved as an "unwanted side effect" of the development of the complex human brain, a new study has found.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.