Understanding and treating the cognitive dysfunction of Down syndrome and Alzheimer's disease

March 1, 2012, Elsevier

Down syndrome (DS) is the most common genetic disorder in live born children arising as a consequence of a chromosomal abnormality. It occurs as a result of having three copies of chromosome 21, instead of the usual two. It causes substantial physical and behavioral abnormalities, including life-long cognitive dysfunction that can range from mild to severe but which further deteriorates as individuals with DS age.

It is not currently possible to effectively treat the cognitive impairments associated with DS. However, these deficits are an increasing focus of research. In this issue of , researchers at Stanford University, led by Dr. Ahmad Salehi, have published a review which highlights potential strategies for the treatment of these cognitive deficits.

The authors focus on insights emerging from animal models of Down syndrome and outline the structural abnormalities in the DS brain. They also discuss studies that have linked the overexpression of the gene, called APP, to the degeneration of neurons in mice. These findings have led to the development of therapeutic treatments in mice, which now must be tested in humans.

"For more than a decade, we have been working on identifying a strategy to treat in our Down syndrome mouse models," said Dr. Salehi. "Considering the research and results with mouse models as an indication of success of a strategy in humans, we are ever closer to finding ways to at least partially restore cognitive function in children and adults with Down syndrome."

Interestingly, this research is also providing insights into Alzheimer's disease (AD), the archetypal disorder of late life. All adults with Down syndrome develop AD pathology by age 40, and there are some remarkable similarities in the brain degeneration and of individuals with DS and those with AD.

The leading AD hypothesis posits that it is caused by increasingly elevated levels of amyloid-related proteins, which are toxic to nerve cells in the brain. These same proteins also accumulate in the brains of people with DS because they are made by the APP gene, which is located on . Individuals with AD don't have the extra chromosome, of course; rather, it is mutations in APP that appear to cause the brain degeneration associated with AD.

Dr. John Krystal, editor of Biological Psychiatry, commented: "The convergence of research on Down syndrome and Alzheimer's disease highlights a central point that cannot be overstated. When we understand the fundamental biology of the brain, important new conceptual bridges emerge that guide new treatment approaches."

Salehi added, "In the near future, we may very likely look back with the perspective that Down syndrome represents an example of how families of affected individuals came together and by supporting basic research, changed the course of a disorder that was considered untreatable for more than a century."

Explore further: Unraveling why children with Down syndrome have increased leukemia risk

More information: The article is "Neurobiological Elements of Cognitive Dysfunction in Down Syndrome: Exploring the Role of APP" by Martha Millan Sanchez, Sietske N. Heyn, Devsmita Das, Sarah Moghadam, Kara J. Martin, and Ahmad Salehi (doi:10.1016/j.biopsych.2011.08.016). The article appears in Biological Psychiatry, Volume 71, Issue 5 (March 1, 2012)

Related Stories

Unraveling why children with Down syndrome have increased leukemia risk

February 22, 2012
Children with Down syndrome (DS) have an increased risk of developing leukemia, in particular acute megakaryoblastic leukemia (AMKL) and acute lymphoblastic leukemia (ALL). Through their studies in a mouse model of DS, a ...

Recommended for you

Intensive behavior therapy no better than conventional support in treating teenagers with antisocial behavior

January 19, 2018
Research led by UCL has found that intensive and costly multisystemic therapy is no better than conventional therapy in treating teenagers with moderate to severe antisocial behaviour.

Babies' babbling betters brains, language

January 18, 2018
Babies are adept at getting what they need - including an education. New research shows that babies organize mothers' verbal responses, which promotes more effective language instruction, and infant babbling is the key.

College branding makes beer more salient to underage students

January 18, 2018
In recent years, major beer companies have tried to capitalize on the salience of students' university affiliations, unveiling marketing campaigns and products—such as "fan cans," store displays, and billboard ads—that ...

Inherited IQ can increase in early childhood

January 18, 2018
When it comes to intelligence, environment and education matter – more than we think.

Modulating molecules: Study shows oxytocin helps the brain to modulate social signals

January 17, 2018
Between sights, sounds, smells and other senses, the brain is flooded with stimuli on a moment-to-moment basis. How can it sort through the flood of information to decide what is important and what can be relegated to the ...

Baby brains help infants figure it out before they try it out

January 17, 2018
Babies often amaze their parents when they seemingly learn new skills overnight—how to walk, for example. But their brains were probably prepping for those tasks long before their first steps occurred, according to researchers.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

RobertKarlStonjek
not rated yet Mar 01, 2012
It occurs as a result of having three copies of chromosome 21, instead of the usual two.
Not all Down syndrome cases are caused by an extra chromosome 21 ~ around 5% are caused by a Robertsonian Translocation between chromosome 14 and chromosome 21.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.