Teaching fat cells to burn calories

March 8, 2012 By Jason Bardi, University of California, San Francisco

(Medical Xpress) -- In the war against obesity, one’s own fat cells may seem an unlikely ally, but new research from the University of California, San Francisco (UCSF) suggests ordinary fat cells can be reengineered to burn calories.

While investigating how a common drug given to people with diabetes works in mice, a UCSF team discovered that a protein called PRDM16, found in both men and mice, can throw a switch on , converting them from ordinary calorie-storing white fat cells into calorie-burning cells.

This discovery makes PRDM16 a possible target for future drugs. Compounds that promote the action of this protein may help people burn calories faster. Though they would have to prove safe and effective in the clinic, such compounds would represent a completely different approach to weight loss. Existing diet drugs aim to restrict the intake of calories — by blocking the absorption of fat in the gut, for instance, or by decreasing appetite.

“If you think about the energy balance, the other way to tackle obesity is through energy expenditure,” said Shingo Kajimura, PhD, who led the research in the UCSF Diabetes Center and the Department of Cell & Tissue Biology in the UCSF School of Dentistry. The work is published this week in the journal Cell Metabolism.

Where Brown Fat Comes From

Scientists believe that brown fat originally evolved in early mammals as a defense against the cold. It helps them maintain their body temperature and thrive in the face of challenging environmental extremes. Not all animals share this ability.

Many animals, like lizards, are “cold blooded” or exothermic. They maintain their body temperature through completely external means, sunbathing at certain times of the day and huddling in warm, protective places at night. This naturally limits their range and explains why lizards, so abundant in tropical climates, are far rarer in cold climates.

“Warm-blooded” mammals, on the other hand, are endothermic. They produce heat internally by a variety of means: shivering, sweating and regulating the size of their blood vessels. Brown fat also contributes by burning fatty acids, which heats the blood coursing nearby, and in turn warms the body.

Though scientists once thought new brown fat was only made in babies, we now know that the human body is capable of creating new brown fat cells throughout life. And in recent years, doctors also have discovered the amount of brown fat in the body is inversely proportional to the likelihood of obesity — the more brown fat people have, the less chance they are obese.

The possibility of exploiting brown fat for weight loss became tantalizing after clinical evidence showed that certain drugs could alter the amount of brown fat a person has. In particular, a common class of drugs given to people with diabetes called PPAR-gamma ligands has been shown to increase brown fat. But scientists never understood why.

Now Kajimura and his UCSF colleagues have demonstrated how it works. In their research, they showed that PPAR-gamma interacts with the protein PRDM16, making it more stable and leading to its accumulation inside cells. This essentially throws a genetic switch and converts the white fat cells to brown — at least in mice.

The question remains whether it is possible to do this in people as well, and if so, how. While new drugs that target this protein may be years away, knowing the target may speed their development, Kajimura said.

The question is no longer how do we make brown fat, he added. Instead it now becomes a more specific question: “Can we simply stabilize this protein?”

The article, “PPAR-gamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein" by Haruya Ohno, Kosaku Shinoda, Bruce M. Spiegelman, and Shingo Kajimura appears in the March 7 issue of the journal Cell Metabolism.

This work was funded by the National Institute of Diabetes and Digestive and Kidney Diseases, one of the National Institutes of Health.

Explore further: Immunity against the cold: Ability of brown fat to burn calories linked to immune cells

Related Stories

Immunity against the cold: Ability of brown fat to burn calories linked to immune cells

December 13, 2011
(PhysOrg.com) -- Throughout the interior spaces of humans and other warm-blooded creatures is a special type of tissue known as brown fat, which may hold the secret to diets and weight-loss programs of the future.

Calorie-burning brown fat is a potential obesity treatment, researchers say

June 6, 2011
A new study suggests that many adults have large amounts of brown fat, the "good" fat that burns calories to keep us warm, and that it may be possible to make even more of this tissue.

Brown fat burns calories in adult humans

January 24, 2012
Brown adipose tissue (often known as brown fat) is a specialized tissue that burns calories to generate body heat in rodents and newborn humans, neither of which shiver.

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.