Study identifies genetic variants linked to fatty liver disease in obese children

March 23, 2012

New research found the genetic variant Patatin-like phospholipase domain containing protein-3 (PNPLA3) acting in conjunction with the glucokinase regulatory protein (GCKR) is associated with increased susceptibility to fatty liver disease in obese children. The study, published in the March issue of Hepatology, a journal of the American Association for the Study of Liver Diseases, determined the PNPLA3 and GCKR single nucleotide polymorphisms (SNPs) were responsible for up to 39% of the hepatic fat content in this pediatric population.

Obesity is a global health concern and children are not unscathed by this epidemic. As a result, experts say nonalcoholic (NAFLD) is now the leading cause of in children and adolescents in industrialized countries. Previous studies indicate genetics significantly impacts the susceptibility of developing fatty liver and (NASH), particularly in early-onset disease, which places greater interest on .

For the current study, a team led by Dr. Nicola Santoro from Yale University School of Medicine in New Haven, Connecticut recruited 455 obese children and adolescents who underwent genotyping and fasting triglycerides and lipoprotein particles testing. Participants in this pediatric cohort had a mean age of 13 years with 181 Caucasian, 139 African American and 135 Hispanic children. Researchers measured hepatic fat content (HFF%) using (MRI) in a subset of 142 children.

Study findings show that rs1260326 in the GCKR gene is associated with higher triglycerides levels and higher levels of very-low-density lipoproteins (VLDL) in Caucasian and African American children. The GCKR SNP was associated with fatty liver in each of the three ethnic groups. A joint effect between PNPLA3 and GCKR SNPs was responsible for 32% of the HFF% in Caucasian, 39% in African American and 15% of Hispanic children. "Our findings confirm that obese youths with genetic variants in the GCKR and PNPLA3 genes may be more susceptible to fatty liver disease. We need to be cautious, though, and refrain to automatically extend this observation to the overall population. In fact, our data refer to a population of obese children and adolescents. I think that further studies involving lean subjects and adults may help to further define in more details these associations," said Dr. Santoro.

In a related editorial, Valerio Nobili with "Bambino Gesu" Children's Hospital and Research Institute in Italy concurs, "Dr. Santoro and colleagues determined the additive effect of PNPLA3 and GCKR variants explained over one third of hepatic fat content variance in obese children." He recommends that ethnicity data be replicated in larger study cohorts due to the small number of participants in each of the three groups.

The study authors suggest that the GCKR variant may lead to accumulation of fat in the liver through an increase in hepatic triglyceride production and further research is warranted to confirm their results. Dr. Santoro concludes, "While the small sample size raises the possibility of false negative results in our study, the presence of both GCKR and PNLPA3 genetic variants acting in combination confers susceptibility to fatty in obese children."

Explore further: Gene variant increases fatty liver risk and fibrosis progression

More information: "A Variant in the Glucokinase Regulatory Protein (GCKR) Gene is Associated with Fatty Liver in Obese Children and Adolescents." Nicola Santoro, Clarence K. Zhang, Hongyu Zhao, Andrew J. Pakstis, Grace Kim, Romy Kursawe, Daniel J. Dykas, Allen E. Bale, Cosimo Giannini, Bridget Pierpont, Melissa M. Shaw, Leif Groop, Sonia Caprio. Hepatology; December 18, 2011 (DOI: 10.1002/hep.24806); Print Issue Date: March 2012.

Editorial: "Unraveling the genetics of fatty liver in obese children: additive effect of P446L GCKR and I148M PNPLA3 polymorphisms." Luca Valenti, Anna Alisi, Valerio Nobili. Hepatology; December 18, 2011 (DOI: 10.1002/hep.25617); Print Issue Date: March 2012.

Related Stories

Gene variant increases fatty liver risk and fibrosis progression

June 28, 2011
New research confirms that a variant on the patatin-like phospholipase-3 (PNPLA3) gene increases risk of steatosis and fibrosis progression in patients with chronic hepatitis C virus (HCV). The PNPLA3 single nucleotide polymorphism ...

Liver, belly fat may identify high risks of heart disease in obese people

July 21, 2011
Obese people with high levels of abdominal fat and liver fat may face increased risks for heart disease and other serious health problems, according to research published in Arteriosclerosis, Thrombosis and Vascular Biology: ...

Recommended for you

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

Newly identified genetic marker may help detect high-risk flu patients

July 17, 2017
Researchers have discovered an inherited genetic variation that may help identify patients at elevated risk for severe, potentially fatal influenza infections. The scientists have also linked the gene variant to a mechanism ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.