Research identifies inhibitor causing male pattern baldness and target for hair-loss treatments

March 21, 2012, University of Pennsylvania School of Medicine

Researchers from the Perelman School of Medicine at the University of Pennsylvania have identified an abnormal amount a protein called Prostaglandin D2 in the bald scalp of men with male pattern baldness, a discovery that may lead directly to new treatments for the most common cause of hair loss in men. In both human and animal models, researchers found that a prostaglandin known as PGD2 and its derivative, 15-dPGJ2, inhibit hair growth. The PGD2-related inhibition occurred through a receptor called GPR44, which is a promising therapeutic target for androgenetic alopecia in both men and women with hair loss and thinning. The study is published in Science Translational Medicine.

Male pattern baldness strikes 8 of 10 men under 70 years old, and causes hair follicles to shrink and produce , which grow for a shorter duration of time than normal follicles.

Researchers took an unbiased approach when scanning for potential biological causes of baldness, looking in scalp tissue from balding and non-bald spots from men with male pattern baldness and then corroborating findings in mouse models. They found that levels of PGD2 were elevated in bald scalp tissue at levels 3 times greater than what was found in comparative haired scalp of men with androgenetic alopecia. When PGD2 was added to cultured hair follicles, PGD2-treated hair was significantly shortly, while PGD2's derivative, 15-dPGJ2, completely inhibited hair growth.

George Cotsarelis, MD, explains that an abnormal amount a protein called Prostaglandin D2 inhibits hair growth in the bald scalp of men, a discovery that may lead directly to new treatments for male pattern baldness. Credit: Perelman School of Medicine, University of Pennsylvania

"Although a different prostaglandin was known to increase hair growth, our findings were unexpected, as prostaglandins haven't been thought about in relation to hair loss, yet it made sense that there was an inhibitor of hair growth, based on our earlier work looking at ," said George Cotsarelis, MD, chair and professor of Dermatology, and senior author on the studies. In a Penn study published in the last year, underlying hair follicle stem cells were found intact, suggesting that the scalp was lacking an activator or something was inhibiting hair follicle growth.

Prostaglandins are well characterized for their role in many bodily functions – controlling cell growth, constricting and dilating smooth muscle tissue – and a different prostaglandin (F2alpha) is known to increase hair growth. Researchers found that as PGD2 inhibits hair growth, other prostaglandins work in opposition, enhancing and regulating the speed of hair growth.

While these studies looked at AGA in men, the researchers noted that prostaglandins may represent a common pathway shared by both men and women with AGA. Future studies, potentially testing topical treatments that may target GPR44, can determine whether targeting prostaglandins will benefit woman with AGA as well.

More information: The research team consisted of Dr. Cotsarelis, lead author Luis Garza, MD, PhD, (former post-doctoral fellow at Penn, now at Johns Hopkins University School of Medicine) and Yaping Liu (now at Merck & company), Zaixin Yang, Brinda Alagesan, Scott Norberg, Tailun Zhao, Hanz Blatt, from Penn's Dermatology department; Garrett FitzGerald and John Lawson from Penn's Department of Pharmacology and the Institute for Translational Medicine and Therapeutics; David Stanton and Lee Carrasco from Penn's Department of Oral and Maxillofacial Surgery and colleagues at Gilette, and University of Texas M.D. Anderson Cancer Center.

Related Stories

Recommended for you

Forces from fluid in the developing lung play an essential role in organ development

January 23, 2018
It is a marvel of nature: during gestation, multiple tissue types cooperate in building the elegantly functional structures of organs, from the brain's folds to the heart's multiple chambers. A recent study by Princeton researchers ...

Anemia discovery offers new targets to treat fatigue in millions

January 22, 2018
A new discovery from the University of Virginia School of Medicine has revealed an unknown clockwork mechanism within the body that controls the creation of oxygen-carrying red blood cells. The finding sheds light on iron-restricted ...

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.