A new drug to manage resistant chronic pain

April 30, 2012

Neuropathic pain, caused by nerve or tissue damage, is the culprit behind many cases of chronic pain. It can be the result of an accident or caused by a variety of medical conditions and diseases such as tumors, lupus, and diabetes. Typically resistant to common types of pain management including ibuprofen and even morphine, neuropathic pain can lead to lifelong disability for many sufferers.

Now a drug developed by Tel Aviv University researchers, known as BL-7050, is offering new hope to patients with neuropathic pain. Developed by Prof. Bernard Attali and Dr. Asher Peretz of TAU's Department of Physiology and Pharmacology at the Sackler Faculty of Medicine, the medication inhibits the transmission of pain signals throughout the body. In both in-vitro and in-vivo experiments measuring electrical activity of neurons, the compound has been shown to prevent the hyper-excitability of neurons — protecting not only against neuropathic pain, but epileptic seizures as well.

The medication has been licensed by Ramot, TAU's technology transfer company, for development and commercialization by BioLineRx, an Israeli biopharmaceutical development company.

Targeting potassium for pain control

According to Prof. Attali, the medication works by targeting a group of proteins which act as a channel for potassium. Potassium has a crucial role in the excitability of cells, specifically those in the nervous system and the heart. When potassium channels don't function properly, cells are prone to hyper-excitability, leading to neurological and cardiovascular disorders such as epilepsy and arrhythmias. These are also the channels that convey caused by nerve or , known as neuropathic pain.

With few treatment options available for neuropathic pain, Prof. Attali set out to develop a medication that could bind to and stabilize the body's potassium channels, controlling their hyper-excitability and preventing the occurrence of pain by keeping the channels open for the outflow of potassium. This novel targeting approach has been recently reported in the journal PNAS.

Inducing calm in the neurons

Understanding the mechanism that controls these channels has been crucial to the development of the drug. By successfully controlling the excitability of the neurons, Prof. Attali believes that BL-7050 could bring relief to hundreds of millions of patients around the world who suffer from neuropathic pain. The medication will reach the first phase of clinical trials in the near future.

In pre-clinical trials, BL-7050 was tested in rats experiencing both epilepsy and neuropathic pain and was found to be efficient in protecting against both when taken as a pill. While on the medication, rats were no longer affected by stimuli that had previously caused pain. Measures in the electrical activities of neurons also revealed that the medication was able to induce "calm" in the neurons, inhibiting pain pathways.

Explore further: New insight into pain mechanisms

Related Stories

New insight into pain mechanisms

April 25, 2012
(Medical Xpress) -- Researchers in the UCL Wolfson Institute for Biomedical Research have made a discovery which could help the development of analgesic drugs able to treat nerve damage-related pain.

Chronic pain gene identified

September 8, 2011
British researchers say they have identified the gene that controls chronic pain, opening the door to new drug therapies that block the chemical processes that cause chronic back pain, headaches or arthritis.

Recommended for you

Brain region mediates pleasure of eating

August 22, 2017
Providing the body with food is essential for survival. But even when full, we can still take pleasure in eating. Researchers at the Max Planck Institute of Neurobiology in Martinsried and the Friedrich Miescher Institute ...

Chronic stress induces fatal organ dysfunctions via a new neural circuit

August 22, 2017
Hokkaido University researchers revealed that fatal gut failure in a multiple sclerosis (MS) mouse model under chronic stress is caused by a newly discovered nerve pathway. The findings could provide a new therapeutic strategy ...

Contact in sports may lead to differences in the brains of young, healthy athletes

August 22, 2017
People who play contact sports show changes to their brain structure and function, with sports that have greater risk of body contact showing greater effects on the brain, a new study has found.

Research reveals 'exquisite selectivity' of neuronal wiring in the cerebral cortex

August 21, 2017
The brain's astonishing anatomical complexity has been appreciated for over 100 years, when pioneers first trained microscopes on the profusion of branching structures that connect individual neurons. Even in the tiniest ...

Afternoon slump in reward response

August 21, 2017
Activation of a reward-processing brain region peaks in the morning and evening and dips at 2 p.m., finds a study of healthy young men published in The Journal of Neuroscience. This finding may parallel the drop in alertness ...

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.