Enzyme in saliva helps regulate blood glucose

April 4, 2012, Monell Chemical Senses Center

Scientists from the Monell Center report that blood glucose levels following starch ingestion are influenced by genetically-determined differences in salivary amylase, an enzyme that breaks down dietary starches. Specifically, higher salivary amylase activity is related to lower blood glucose.

The findings are the first to demonstrate a significant metabolic role for salivary amylase in starch digestion, suggesting that this oral enzyme may contribute significantly to overall . Other implications relate to calculating the glycemic index of starch-rich foods and ultimately the risk of developing diabetes.

"Two individuals may have very different glycemic responses to the same starchy food, depending on their amylase levels," said lead author Abigail Mandel, Ph.D., a nutritional scientist at Monell. "Individuals with high amylase levels are better adapted to eat starches, as they rapidly digest the starch while maintaining balanced levels. The opposite is true for those with low amylase levels. As such, people may want to take their amylase levels into account if they are paying attention to the of the foods they are eating."

Starch from wheat, potatoes, corn, rice, and other grains is a major component of the United States diet, comprising up to 60 percent of our calories. Amylase enzymes secreted in saliva help break down starches into simpler that can be absorbed into the . In this way, amylase activity influences blood glucose levels, which need to be maintained within an optimal range for good health.

A previous study had demonstrated that individuals with high salivary amylase activity are able to break down oral starch very rapidly. This finding led the researchers to ask how this 'pre-digestion' contributes to overall starch digestion and .

In the current study, published online in The , amylase activity was measured in saliva samples obtained from 48 healthy adults. Based on extremes of salivary amylase activity, two groups of seven were formed: high amylase (HA) and low amylase (LA).

Each subject drank a simplified corn starch solution and blood samples were obtained over a two hour period afterwards. The samples were analyzed to determine blood glucose levels and insulin concentrations.

After ingesting the starch, individuals in the HA group had lower blood glucose levels relative to those in the LA group. This appears to be related to an early release of insulin by the HA individuals.

"Not all people are the same in their ability to handle starch," said senior author Paul Breslin, Ph.D., a sensory geneticist at Monell. "People with higher levels of salivary amylase are able to maintain more stable when consuming starch. This might ultimately lessen their risk for insulin resistance and non-insulin dependent diabetes."

Additional studies will confirm the current findings using more complex starchy foods, such as bread and pasta. Another focus will involve identifying the neuroendocrine mechanisms that connect starch breakdown in the mouth with insulin release.

Related Stories

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.