Microchip success for bionic eye

April 3, 2012
Microchip for the bionic eye

(Medical Xpress) -- Research to restore sight to the clinically blind has reached a critical stage, with testing underway of the prototype microchips that will power the bionic eye.

Electrical engineers from the Monash Vision Group (MVG) have begun trailling the , with early laboratory tests proving positive, and pre-clinical assessment due to begin shortly.

The Director of MVG, Professor Arthur Lowery said the positive result meant the project was on track to deliver a direct-to-brain bionic ready for patient tests in 2014.

The device will consist of a mounted into a pair of glasses, which acts as the retina; a pocket processor, which takes the electronic information from the camera and converts it into signals enabling the brain to build up a visual construct; and cortical implants of several tiles which will be the portal for the stimulation of the .

“The aim for this vision prosthetic is to be at least equivalent to a seeing-eye dog or a white cane. While it would initially complement existing aids such as these, we believe the device eventually will replace them, and as the technology is further refined, become sufficiently sensitive to discriminate large print,” Professor Lowery said.

“The microchips we are testing will be implanted directly on the surface of a patient’s visual cortex, located at the back of the brain. It’s estimated that each patient will receive a grid of up to 14 eight-by-eight millimetre tiles,” Professor Lowery said.

Each tile comprises a four-by-four millimeter microchip with some 500,000 transistors and 45 hair-thin electrodes. When fully operational, these tiles will receive low-resolution, black-and-white images from an external digital processing unit connected to a high-resolution camera.

Dr. Jean-Michel Redouté, MVG’s Program Leader, Implantable Electronics, said one of the project’s main challenges was harnessing and powering this array of electrically-charged devices in the brain.

“Achieving acceptable vision requires far more electrode capacity than the amount required to power a bionic ear. While the bionic ear requires approximately 15 electrodes, we’ll need at least 600 to produce useful vision for patients,” Dr. Redouté said.

Over 50,000 people in Australia are considered clinically blind. The number exceeds 160 million globally .

The MVG was established in April 2010, with an $8 million grant from the Australian Research Council. The MVG accommodates more than 20 leaders in physiology, neurosurgery, ophthalmology, electrical and electronic engineering, mechanical and materials engineering, mathematics and immunology.

Explore further: Electrical stimulation to help the blind see

Related Stories

Electrical stimulation to help the blind see

October 12, 2011
(Medical Xpress) -- In people who have lost vision due to an injury or disease, the brain is still capable of "seeing." Researchers from the Massachusetts Institute of Technology’s Cognitive and Brain Science Department ...

‘Eyeborg’ man films vision of future (w/ video)

August 30, 2011
(PhysOrg.com) -- A Canadian filmmaker whose childhood hero was Lee Majors as a bionic man is making the most out of what he has done to compensate for having lost one eye by becoming Eyeborg Man. Rob Spence, who lost an eye ...

Recommended for you

Antioxidant supplement cost saving and effective for degenerative eye disease

August 24, 2017
A supplement that combines antioxidants with zinc and copper is a relatively inexpensive and effective means of halting the progression of a certain type of degenerative eye disease, concludes research published online in ...

Researchers identify key compounds to resolve abnormal vascular growth in AMD

August 21, 2017
A compound of specific bioactive products from a major family of enzymes reduced the severity of age-related macular degeneration (AMD) in a preclinical model, according to a new study led by Massachusetts Eye and Ear researchers. ...

World's blind population to soar: study

August 3, 2017
The world's blind will increase threefold from about 36 million today to 115 million in 2050 as populations expand and individuals grow ever older, researchers said Thursday.

Simulations signal early success for fractal-based retinal implants

July 27, 2017
Computer simulations of electrical charges sent to retinal implants based on fractal geometry have University of Oregon researchers moving forward with their eyes focused on biological testing.

Scientists regenerate retinal cells in mice

July 26, 2017
Scientists have successfully regenerated cells in the retina of adult mice at the University of Washington School of Medicine in Seattle.

Genome editing with CRISPR-Cas9 prevents angiogenesis of the retina

July 24, 2017
A research team from the Schepens Eye Research Institute of Massachusetts Eye and Ear has successfully prevented mice from developing angiogenesis of the retina—the sensory tissue at the back of the eye—using gene-editing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.