Scientists achieve breakthrough in understanding sense of touch

April 2, 2012
Scientists achieve breakthrough in understanding sense of touch
The journal Cell's cover story features research findings by University of Wyoming neurobiologist Jeff Woodbury. He was part of a research team that is providing a new understanding of the sense of touch.

(Medical Xpress) -- A research team including University of Wyoming neurobiologist Jeff Woodbury has discovered a new technique to determine how the touch sensory system is organized in hairy skin, providing a new understanding of the sense of touch.

Their findings were selected to appear as the feature and cover article in Cell, one of the pre-eminent international journals in the biological sciences.

The research provides the first picture of how that carry signals from hair on the are organized. Unlike all other senses, the skin is least amenable to study and has remained the most poorly understood.

"We have described the system that is in place to help explain how sensory information is processed to perceive the sense of touch," says Woodbury, an associate professor in the UW Department of Zoology and Physiology. He was part of a multidisciplinary research team led by David Ginty from Johns Hopkins University. Colleen Cassidy, a doctoral student in Woodbury's lab, was a co-author of the study, which also included colleagues from the Howard Hughes Medical Institute at Rockefeller University, University of Pennsylvania and University of Pittsburgh.

"We have also been able to identify how combinations of nerve cells respond to fine-tactile stimuli, so we can now really begin to tease apart the circuitry of touch sensation," Woodbury adds. "One of the real breakthroughs is that, for the first time in more than 200 years of study, we now know the specific functions of some of the many different kinds of nerve endings in the skin. This is truly exciting and a major advance."

Mice have several different types of hair follicles in their coat, each of which is linked to the by low-threshold wire-like nerve cells that stretch all the way to the spinal cord. There, the myriad signals carried from the skin are integrated, processed and sent to the brain.

This network of nerve endings in the skin of most hairy mammals, including humans, allows them to perceive fine tactile sensations, such as a drop of rain or an insect landing on their skin. The researchers now have a better understanding of how this complex system is organized. Before this discovery, Woodbury says there was no way to see how all of these different nerve cells were arranged -- both in the skin and at the top of the spinal cord, where they end up.

The study, Woodbury says, opens doors to understanding not only touch, but skin senses such as temperature detection and pain.

"Touch is ultimately felt in the brain; it alerts us that something is going on," he says. "We have identified the logic of how this system is organized. We now know that each individual hair is a distinct sensory organ, and each one will detect different forces. A broad spectrum of frequencies within a given stimulus are ultimately recombined and analyzed until we become aware that something has happened, like a drop of rain or a light breeze."

Once the different sensory neurons are identified, researchers could test hypotheses about the role of these cells in the process of sensation.

"For example, researchers could study the animal, in the presence or absence of each of the different types of sensory cells, to determine differences in the animal's behavior," Woodbury says. "It will be possible to shut them off, take them out of the picture, to see how the animal responds to different types of stimulation. The key to understanding any system is first to gain a marker to identify all the different components, and we have made a major step in that direction."

Explore further: How skin is wired for touch

Related Stories

How skin is wired for touch

December 22, 2011
Compared to our other senses, scientists don't know much about how our skin is wired for the sensation of touch. Now, research reported in the December 23rd issue of the journal Cell provides the first picture of how specialized ...

People with DFNA2 hearing loss show increased touch sensitivity

December 9, 2011
People with a certain form of inherited hearing loss have increased sensitivity to low frequency vibration, according to a study by Professor Thomas Jentsch of the Leibniz-Institut für Molekulare Pharmakologie (FMP)/Max ...

The molecular basis of touch sensation: New function of a well-known gene identified

February 21, 2012
A gene known to control lens development in mice and humans is also crucial for the development of neurons responsible for mechanosensory function, as neurobiologists of the Max Delbrück Center for Molecular Medicine ...

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Artificial neural networks decode brain activity during performed and imagined movements

August 18, 2017
Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.