Researchers discover biomarkers for prostate cancer detection, recurrence

May 14, 2012

Alterations to the "on-off" switches of genes occur early in the development of prostate cancer and could be used as biomarkers to detect the disease months or even years earlier than current approaches, a Mayo Clinic study has found. These biomarkers — known as DNA methylation profiles — also can predict if the cancer is going to recur and if that recurrence will remain localized to the prostate or, instead, spread to other organs. The study, published in the journal Clinical Cancer Research, is the first to capture the methylation changes that occur across the entire human genome in prostate cancer.

The discovery could someday help physicians diagnose prostate cancer earlier and make more effective treatment decisions to improve cure rates and reduce deaths. It also points to the development of new drugs that reverse the DNA methylation changes, turning the "off" switch back "on" and returning the genetic code to its normal, noncancerous state.

"Our approach is more accurate and reliable than the widely used PSA (prostate-specific antigen) test," says senior author Krishna Donkena, Ph.D., a Mayo Clinic molecular biologist.

The PSA test detects any prostate abnormality, whether inflammation, cancer, infection or enlargement, while the DNA methylation changes are specific to prostate cancer, she says.

Though the instructions for all the cell's activities lie within the , whether a particular gene is turned "off" or "on" is determined by the presence or absence of specific chemical tags or methyl groups — methylation — along the underlying DNA of cells. When this process of DNA methylation turns off the activity of tumor suppressor genes, cancer develops.

Dr. Donkena and her colleagues analyzed the methylation status of 14,495 genes from 238 prostate cancer patients. The patients included people who remained cancer-free after treatment, those who had a localized tumor recurrence and those whose cancer spread. The researchers found that the DNA methylation changes that occurred during the earliest stages of prostate cancer development were nearly identical in all patients.

Having discovered DNA methylation patterns that could distinguish between healthy and cancerous tissue, the researchers then searched for similar that could distinguish between patients with varying levels of recurrence risk. They found distinct methylation alterations that corresponded to whether a patient had a slow-growing tumor known as an indolent tumor, or had a more aggressive one.

If physicians can determine what type of tumor patients have, they can avoid exposing patients with indolent tumors to unnecessary treatment, and can treat those with aggressive tumors earlier and more effectively, Dr. Donkena says.

Dr. Donkena and her colleagues are working to develop a DNA methylation test that is more cost-effective and practical for use in clinical settings. Currently, the test relies on microarray or gene "chip" technology that assesses methylation status of genes across an entire genome. The researchers are trying to generate more economical custom microarray to specifically look at only the genes that predict the development of prostate cancer or recurrence.

They also hope to develop drugs that can reverse DNA methylation in cells. Similar drugs are already being used to treat certain forms of leukemia.

Explore further: Genetic markers could help to speed up detection and treatment of prostate cancer

Related Stories

Genetic markers could help to speed up detection and treatment of prostate cancer

May 23, 2011
Prostate cancer is the most commonly diagnosed cancer in men. But it can be difficult to diagnose, and it’s hard to know which cancers will become dangerous and which need less-aggressive treatment. Researchers and clinicians ...

Cancer biomarker -- detectable by blood test -- could improve prostate cancer detection

August 8, 2011
A new study supports the use of a DNA-based "biomarker" blood test as a complement to the prostate-specific antigen (PSA) test currently offered to screen men for prostate cancer. University of Cincinnati (UC) researchers ...

Study discovers genetic pathway impacting the spread of cancer cells

May 3, 2012
In a new study from Lawson Health Research Institute, Dr. Joseph Torchia has identified a new genetic pathway influencing the spread of cancer cells. The discovery of this mechanism could lead to new avenues for treatment.

Recommended for you

Study shows how nerves drive prostate cancer

October 19, 2017
In a study in today's issue of Science, researchers at Albert Einstein College of Medicine, part of Montefiore Medicine, report that certain nerves sustain prostate cancer growth by triggering a switch that causes tumor vessels ...

Fundamental research enhances understanding of major cancer gene

October 19, 2017
New research represents a promising step towards better understanding of a key cancer gene. A long-running collaboration between researchers at the Babraham Institute, Cambridge and the AstraZeneca IMED Biotech Unit reveals ...

Gene circuit switches on inside cancer cells, triggers immune attack

October 19, 2017
Researchers at MIT have developed a synthetic gene circuit that triggers the body's immune system to attack cancers when it detects signs of the disease.

One to 10 mutations are needed to drive cancer, scientists find

October 19, 2017
For the first time, scientists have provided unbiased estimates of the number of mutations needed for cancers to develop, in a study of more than 7,500 tumours across 29 cancer types. Researchers from the Wellcome Trust Sanger ...

Researchers target undruggable cancers

October 19, 2017
A new approach to targeting key cancer-linked proteins, thought to be 'undruggable," has been discovered through an alliance between industry and academia.

Mutant gene found to fuel cancer-promoting effects of inflammation

October 19, 2017
A human gene called p53, which is commonly known as the "guardian of the genome," is widely known to combat the formation and progression of tumors. Yet, mutant forms of p53 have been linked to more cases of human cancer ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.