Blocking LRRK2 activity is not a simple answer to Parkinson's disease

May 29, 2012

Mutations in the LRRK2 gene are the most common cause of genetic Parkinson's disease (PD). New research published in BioMed Central's open access journal Molecular Neurodegeneration demonstrates that loss of function of LRRK2 (by deletion of the kinase domain) leads to changes in motor co-ordination and causes anxiety-like behaviors and kidney degeneration in mice without affecting dopamine-mediated brain activity.

The protein LRRK2 is involved in regulating the structure and function of neurons. Aberrant LRRK2 has been shown experimentally to have subtle effects on dopamine signaling which may mirror the earliest changes in . In order to investigate how LRRK2 works researchers from Mayo Clinic deleted the kinase domain of LRRK2 protein in mice.

Dr Heather Melrose, who lead this study explained, "Since the gene is too big to delete the entire gene we targeted the kinase domain because we regarded this as the most important functional region. The specific section we deleted, exon 41, encodes the activation hinge of the kinase. The experimental strategy actually resulted, as we hoped, in a complete loss of the LRRK2 protein in the mice."

The team found that loss of LRRK2 did not affect dopamine signaling in the mice. The mice appeared to be normal however they had subtle behavioral changes similar to those previously seen for mice with the LRRK2 mutation G2019S, and sometimes seen in PD patients, such as increased anxiety. Deletion of the LRRK2 protein also affected .

Dr Melrose continued, "The most common mutation of LRRK2 (G2019S) is within the kinase domain however it is not thought to lead to a loss in kinase activity. Instead it is thought that the mutated LRRK2 kinase is somehow 'toxic' and anti-LRRK2 therapies are currently being designed to lower LRRK2 levels or block its kinase activity. Our results suggest that blocking normal LRRK2 activity causes changes in mice. These changes may be similar to anxiety disorder in PD, a disabling non-motor symptom of the disease which often precedes the motor defects by decades. Our data adds evidence to a different theory, that some biological consequences of the LRRK2 mutations may be a loss rather than gain of function."

It seems then that LRRK2 is a complicated protein and that restoring normal activity to patients with PD is not going to be simple. Not only may anti-LRRK2 therapies have side effects on the kidney but they also may disrupt some brain functions and sensory processing. These are going to be important considerations for design and use of LRRK2-based therapeutics.

More information: LRRK2 knockout mice have an intact dopaminergic system but display alterations in exploratory and motor co-ordination behaviors
Kelly M Hinkle, Mei Yue, Bahareh Behrouz, Justus C Dachsel, Sarah J Lincoln, Erin E Bowles, Joel E Beevers, Brittany N Dugger, Caroline B Kent, Beate Winner, Iryna Prots, Kenya Nishioka, Wenlang Lin, Dennis W Dickson, Christopher G Janus, Matthew J Farrer and Heather L Melrose
Molecular Neurodegeneration (in press)

Related Stories

Recommended for you

Singing may be good medicine for Parkinson's patients

August 11, 2017
(HealthDay)—Singing? To benefit people with Parkinson's disease? It just may help, a researcher says.

Tracing the path of Parkinson's disease proteins

August 4, 2017
As neurodegenerative disorders such as Parkinson's and Alzheimer's disease progress, misfolded proteins clump together in neurons, recruiting normal proteins in the cell to also misfold and aggregate. Cells in which this ...

Diabetes drug shows potential as disease-modifying therapy for Parkinson's disease

August 3, 2017
A drug commonly used to treat diabetes may have disease-modifying potential to treat Parkinson's disease, a new UCL-led study suggests, paving the way for further research to define its efficacy and safety.

Two new studies offer insights into gastrointestinal dysfunction in Parkinson's patients

July 31, 2017
Constipation is one of the most common non-motor related complaints affecting Parkinson's disease (PD) patients. Two important studies from the same research group published in the Journal of Parkinson's Disease expand the ...

New drug may treat and limit progression of Parkinson's disease

July 31, 2017
Researchers at Binghamton University have developed a new drug that may limit the progression of Parkinson's disease while providing better symptom relief to potentially hundreds of thousands of people with the disease.

A new insight into Parkinson's disease protein

July 28, 2017
Abnormal clumps of certain proteins in the brain are a prominent feature of Parkinson's and other neurodegenerative diseases, but the role those same proteins might play in the normal brain has been unknown.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.