Learning and memory: The role of neo-neurons revealed

May 22, 2012
Learning and memory: the role of neo-neurons revealed
Section of a mouse brain observed using a fluorescence microscope. The green filaments represent neo-neurons in an organized network. Credit: Institut Pasteur

(Medical Xpress) -- Researchers at the Institut Pasteur and the CNRS have recently identified in mice the role played by neo-neurons formed in the adult brain. By using selective stimulation the researchers were able to show that these neo-neurons increase the ability to learn and memorize difficult cognitive tasks. This newly discovered characteristic of neo-neurons to assimilate complex information could open up new avenues in the treatment of some neurodegenerative diseases. This publication is available online on the Nature Neuroscience journal's website.

The discovery that new neurons could be formed in the created quite a stir in 2003 by debunking the age-old belief that a person is born with a set number of neurons and that any loss of neurons is irreversible. This was all the more incredible considering that the function of these new neurons remained undetermined. That is, until today.

Using mice models the team working under Pierre-Marie Lledo, head of the Laboratory for and Memory (Institut Pasteur/CNRS) recently revealed the role of these neo-neurons formed in the adult brain with respect to . With the help of an experimental approach using optogenetics, developed by this very same team and published in December 2010, the researchers were able to show that when stimulated by a brief flash of light these neo-neurons facilitate both learning and the of complex tasks. This resulted in mice models that were able to memorize information given during the learning activity more quickly and remember exercises even 50 days after experimentation had ended. The study also shows that neo-neurons generated just after birth hold no added advantages as relates to either learning or memory. In this respect it is only the neurons produced by the adult brain that have any considerable significance.

“This study shows that the activity of just a few neurons produced in the adult brain can still have considerable effects on cognitive processes and behavior. Moreover, this work helps to illustrate how the brain assimilates new stimulations seeing as normally electrical activity (which we mimic using flashes of light) is produced within the brain's attention centers”, explains the study's director Pierre-Marie Lledo.

Beyond simply discovering the functional contribution of these neo-neurons, the study has also reaffirmed the clear link between “mood” (defined here by a specific pattern of stimulation) and cerebral activity. It has been shown that curiosity, attentiveness and pleasure all promote the formation of neo-neurons and consequently the acquisition of new cognitive abilities. Conversely, a state of depression is detrimental to the production of new neurons and triggers a vicious cycle which prolongs this state of despondency. These results, and the optogenetics technologies that enabled this study, may prove very useful for devising therapeutic protocols which aim to counter the development of neurologic or psychiatric diseases.

Explore further: Major discovery explains how adult brain cleans out dead brain cells, produces new ones

More information: Activation of adult-born neurons facilitates learning and memory, published online on the Nature Neuroscience website, May 13, 2012, Mariana Alonso, et al.

Related Stories

Major discovery explains how adult brain cleans out dead brain cells, produces new ones

August 10, 2011
(Medical Xpress) -- Adult brains generate thousands of new brain cells called neurons each day; however only a small fraction of them survive. The rest die and are consumed by scavenger cells called phagocytes. Until now, ...

Researchers gain new insight into prefrontal cortex activity

March 5, 2012
The brain has a remarkable ability to learn new cognitive tasks while maintaining previously acquired knowledge about various functions necessary for everyday life. But exactly how new information is incorporated into brain ...

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Artificial neural networks decode brain activity during performed and imagined movements

August 18, 2017
Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ...

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

JVK
not rated yet May 23, 2012
This report seems to confirm the role of nutrient chemicals in ecological niches that calibrate intracellular signaling and the development of social niches, which are standardized and controlled by pheromones. Because the molecular biology is the same across species with or without eyes or a central nervous system, olfaction and odor receptors provide a clear evolutionary trail that can be followed from unicellular organisms to insects to humans. The idea that ecological niches and social niches are the determinants of neurogenic niches, like those that develop with exposure to food odors and social odors is one that is important to consider whether we intend to look at pharmacogenomics or to better understand the development of human behavior in the context of epigenetic effects of odors on brain development. I look forward to reading the publication of their results, and to a review of past works by some of these authors.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.