Learning and memory: The role of neo-neurons revealed

May 22, 2012
Learning and memory: the role of neo-neurons revealed
Section of a mouse brain observed using a fluorescence microscope. The green filaments represent neo-neurons in an organized network. Credit: Institut Pasteur

(Medical Xpress) -- Researchers at the Institut Pasteur and the CNRS have recently identified in mice the role played by neo-neurons formed in the adult brain. By using selective stimulation the researchers were able to show that these neo-neurons increase the ability to learn and memorize difficult cognitive tasks. This newly discovered characteristic of neo-neurons to assimilate complex information could open up new avenues in the treatment of some neurodegenerative diseases. This publication is available online on the Nature Neuroscience journal's website.

The discovery that new neurons could be formed in the created quite a stir in 2003 by debunking the age-old belief that a person is born with a set number of neurons and that any loss of neurons is irreversible. This was all the more incredible considering that the function of these new neurons remained undetermined. That is, until today.

Using mice models the team working under Pierre-Marie Lledo, head of the Laboratory for and Memory (Institut Pasteur/CNRS) recently revealed the role of these neo-neurons formed in the adult brain with respect to . With the help of an experimental approach using optogenetics, developed by this very same team and published in December 2010, the researchers were able to show that when stimulated by a brief flash of light these neo-neurons facilitate both learning and the of complex tasks. This resulted in mice models that were able to memorize information given during the learning activity more quickly and remember exercises even 50 days after experimentation had ended. The study also shows that neo-neurons generated just after birth hold no added advantages as relates to either learning or memory. In this respect it is only the neurons produced by the adult brain that have any considerable significance.

“This study shows that the activity of just a few neurons produced in the adult brain can still have considerable effects on cognitive processes and behavior. Moreover, this work helps to illustrate how the brain assimilates new stimulations seeing as normally electrical activity (which we mimic using flashes of light) is produced within the brain's attention centers”, explains the study's director Pierre-Marie Lledo.

Beyond simply discovering the functional contribution of these neo-neurons, the study has also reaffirmed the clear link between “mood” (defined here by a specific pattern of stimulation) and cerebral activity. It has been shown that curiosity, attentiveness and pleasure all promote the formation of neo-neurons and consequently the acquisition of new cognitive abilities. Conversely, a state of depression is detrimental to the production of new neurons and triggers a vicious cycle which prolongs this state of despondency. These results, and the optogenetics technologies that enabled this study, may prove very useful for devising therapeutic protocols which aim to counter the development of neurologic or psychiatric diseases.

Explore further: Major discovery explains how adult brain cleans out dead brain cells, produces new ones

More information: Activation of adult-born neurons facilitates learning and memory, published online on the Nature Neuroscience website, May 13, 2012, Mariana Alonso, et al.

Related Stories

Major discovery explains how adult brain cleans out dead brain cells, produces new ones

August 10, 2011
(Medical Xpress) -- Adult brains generate thousands of new brain cells called neurons each day; however only a small fraction of them survive. The rest die and are consumed by scavenger cells called phagocytes. Until now, ...

Researchers gain new insight into prefrontal cortex activity

March 5, 2012
The brain has a remarkable ability to learn new cognitive tasks while maintaining previously acquired knowledge about various functions necessary for everyday life. But exactly how new information is incorporated into brain ...

Recommended for you

Now you like it, now you don't: Brain stimulation can change how much we enjoy and value music

November 20, 2017
Enjoyment of music is considered a subjective experience; what one person finds gratifying, another may find irritating. Music theorists have long emphasized that although musical taste is relative, our enjoyment of music, ...

MRI uncovers brain abnormalities in people with depression and anxiety

November 20, 2017
Researchers using MRI have discovered a common pattern of structural abnormalities in the brains of people with depression and social anxiety, according to a study presented being next week at the annual meeting of the Radiological ...

Deletion of a stem cell factor promotes TBI recovery in mice

November 20, 2017
UT Southwestern molecular biologists today report the unexpected finding that selectively deleting a stem cell transcription factor in adult mice promotes recovery after traumatic brain injury (TBI).

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

Neuroscience research provides evidence the brain is strobing, not constant

November 17, 2017
It's not just our eyes that play tricks on us, but our ears. That's the finding of a landmark Australian-Italian collaboration that provides new evidence that oscillations, or 'strobes', are a general feature of human perception.

Brain activity buffers against worsening anxiety

November 17, 2017
Boosting activity in brain areas related to thinking and problem-solving may also buffer against worsening anxiety, suggests a new study by Duke University researchers.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

JVK
not rated yet May 23, 2012
This report seems to confirm the role of nutrient chemicals in ecological niches that calibrate intracellular signaling and the development of social niches, which are standardized and controlled by pheromones. Because the molecular biology is the same across species with or without eyes or a central nervous system, olfaction and odor receptors provide a clear evolutionary trail that can be followed from unicellular organisms to insects to humans. The idea that ecological niches and social niches are the determinants of neurogenic niches, like those that develop with exposure to food odors and social odors is one that is important to consider whether we intend to look at pharmacogenomics or to better understand the development of human behavior in the context of epigenetic effects of odors on brain development. I look forward to reading the publication of their results, and to a review of past works by some of these authors.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.