Learning and memory: The role of neo-neurons revealed

May 22, 2012
Learning and memory: the role of neo-neurons revealed
Section of a mouse brain observed using a fluorescence microscope. The green filaments represent neo-neurons in an organized network. Credit: Institut Pasteur

(Medical Xpress) -- Researchers at the Institut Pasteur and the CNRS have recently identified in mice the role played by neo-neurons formed in the adult brain. By using selective stimulation the researchers were able to show that these neo-neurons increase the ability to learn and memorize difficult cognitive tasks. This newly discovered characteristic of neo-neurons to assimilate complex information could open up new avenues in the treatment of some neurodegenerative diseases. This publication is available online on the Nature Neuroscience journal's website.

The discovery that new neurons could be formed in the created quite a stir in 2003 by debunking the age-old belief that a person is born with a set number of neurons and that any loss of neurons is irreversible. This was all the more incredible considering that the function of these new neurons remained undetermined. That is, until today.

Using mice models the team working under Pierre-Marie Lledo, head of the Laboratory for and Memory (Institut Pasteur/CNRS) recently revealed the role of these neo-neurons formed in the adult brain with respect to . With the help of an experimental approach using optogenetics, developed by this very same team and published in December 2010, the researchers were able to show that when stimulated by a brief flash of light these neo-neurons facilitate both learning and the of complex tasks. This resulted in mice models that were able to memorize information given during the learning activity more quickly and remember exercises even 50 days after experimentation had ended. The study also shows that neo-neurons generated just after birth hold no added advantages as relates to either learning or memory. In this respect it is only the neurons produced by the adult brain that have any considerable significance.

“This study shows that the activity of just a few neurons produced in the adult brain can still have considerable effects on cognitive processes and behavior. Moreover, this work helps to illustrate how the brain assimilates new stimulations seeing as normally electrical activity (which we mimic using flashes of light) is produced within the brain's attention centers”, explains the study's director Pierre-Marie Lledo.

Beyond simply discovering the functional contribution of these neo-neurons, the study has also reaffirmed the clear link between “mood” (defined here by a specific pattern of stimulation) and cerebral activity. It has been shown that curiosity, attentiveness and pleasure all promote the formation of neo-neurons and consequently the acquisition of new cognitive abilities. Conversely, a state of depression is detrimental to the production of new neurons and triggers a vicious cycle which prolongs this state of despondency. These results, and the optogenetics technologies that enabled this study, may prove very useful for devising therapeutic protocols which aim to counter the development of neurologic or psychiatric diseases.

Explore further: Major discovery explains how adult brain cleans out dead brain cells, produces new ones

More information: Activation of adult-born neurons facilitates learning and memory, published online on the Nature Neuroscience website, May 13, 2012, Mariana Alonso, et al.

Related Stories

Major discovery explains how adult brain cleans out dead brain cells, produces new ones

August 10, 2011
(Medical Xpress) -- Adult brains generate thousands of new brain cells called neurons each day; however only a small fraction of them survive. The rest die and are consumed by scavenger cells called phagocytes. Until now, ...

Researchers gain new insight into prefrontal cortex activity

March 5, 2012
The brain has a remarkable ability to learn new cognitive tasks while maintaining previously acquired knowledge about various functions necessary for everyday life. But exactly how new information is incorporated into brain ...

Recommended for you

Social influences can override aggression in male mice, study shows

July 27, 2017
Stanford University School of Medicine investigators have identified a cluster of nerve cells in the male mouse's brain that, when activated, triggers territorial rage in a variety of situations. Activating the same cluster ...

In witnessing the brain's 'aha!' moment, scientists shed light on biology of consciousness

July 27, 2017
Columbia scientists have identified the brain's 'aha!' moment—that flash in time when you suddenly become aware of information, such as knowing the answer to a difficult question. Today's findings in humans, combined with ...

Scientists become research subjects in after-hours brain-scanning project

July 27, 2017
A quest to analyze the unique features of individual human brains evolved into the so-called Midnight Scan Club, a group of scientists who had big ideas but almost no funding and little time to research the trillions of neural ...

Researchers reveal unusual chemistry of protein with role in neurodegenerative disorders

July 27, 2017
A common feature of neurodegenerative diseases is the formation of permanent tangles of insoluble proteins in cells. The beta-amyloid plaques found in people with Alzheimer's disease and the inclusion bodies in motor neurons ...

Mother's brain reward response to offspring reduced by substance addiction

July 27, 2017
Maternal addiction and its effects on children is a major public health problem, often leading to high rates of child abuse, neglect and foster care placement. In a study published today in the journal Human Brain Mapping, ...

'Residual echo' of ancient humans in scans may hold clues to mental disorders

July 26, 2017
Researchers at the National Institute of Mental Health (NIMH) have produced the first direct evidence that parts of our brains implicated in mental disorders may be shaped by a "residual echo" from our ancient past. The more ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

JVK
not rated yet May 23, 2012
This report seems to confirm the role of nutrient chemicals in ecological niches that calibrate intracellular signaling and the development of social niches, which are standardized and controlled by pheromones. Because the molecular biology is the same across species with or without eyes or a central nervous system, olfaction and odor receptors provide a clear evolutionary trail that can be followed from unicellular organisms to insects to humans. The idea that ecological niches and social niches are the determinants of neurogenic niches, like those that develop with exposure to food odors and social odors is one that is important to consider whether we intend to look at pharmacogenomics or to better understand the development of human behavior in the context of epigenetic effects of odors on brain development. I look forward to reading the publication of their results, and to a review of past works by some of these authors.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.