Mouse study links delayed female sexual maturity to longer lifespan

May 7, 2012

An intriguing clue to longevity lurks in the sexual maturation timetable of female mammals, Jackson Laboratory researchers and their collaborators report.

Jackson researchers including Research Scientist Rong Yuan, Ph.D., had previously established that mouse strains with lower circulating levels of the hormone IGF1 at age six months live longer than other strains. In research published May 7 in the , Yuan and colleagues report that from strains with lower IGF1 levels also reach at a significantly later age.

"This suggests a genetically regulated tradeoff—delayed reproduction but longer life—that is at least partially mediated by IGF1," Yuan says.

The researchers conclude that IGF1 may co-regulate female and . They showed that mouse strains derived from wild populations carry specific gene variants that delay sexual maturation, and they identified a candidate gene, Nrip1, involved in regulating sexual maturation that may also affect longevity by controlling IGF1 levels.

Yuan notes that researchers in England recently showed that higher levels of IGF1 and other hormones in girls are associated with earlier age of menarche (onset of menstruation). In the newly published research, Yuan and colleagues used the biological benchmark of vaginal patency (VP) as indicator of sexual maturity in mice.

Mice from the inbred strain C57BL/6J, also known as "Black 6," showed 9 percent lower IGF1, 6 percent delayed age of VP and 24 percent extended lifespan compared to a Black 6 substrain that carries a gene variation that increases IGF1.

Using a technique called haplotype mapping, the researchers screened genetic and physiological data for 31 different inbred mouse strains and found genes that regulate female sexual maturation and lifespan, on Chromosomes 4 and 16. They showed that wild-derived share a genetic profile associated with delayed VP and increased longevity, and identified a candidate gene, Nrip1, that controls IGF1 and age of VP.

Explore further: Stop signal for leukemia stem cells

Related Stories

Stop signal for leukemia stem cells

August 23, 2011
There are numerous specialized growth factors that are responsible for cells of different tissues of our body to divide and differentiate when needed. These hormone-like factors bind to matching receptors on the surface of ...

Recommended for you

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.