Freezing Parkinson's in its tracks

May 2, 2012, Tel Aviv University

Parkinson's disease, a disorder which affects movement and cognition, affects over a million Americans, including actor Michael J. Fox, who first brought it to the attention of many TV-watching Americans. It's characterized by a gradual loss of neurons that produce dopamine. Mutations in the gene known as DJ-1 lead to accelerated loss of dopaminergic neurons and result in the onset of Parkinson's symptoms at a young age.

The ability to modify the activity of DJ-1 could change the progress of the disease, says Dr. Nirit Lev, a researcher at Tel Aviv University's Sackler Faculty of Medicine and a movement disorders specialist at Rabin Medical Center. Working in collaboration with Profs. Dani Offen and Eldad Melamed, Dr. Lev has now developed a peptide which mimics DJ-1's normal function, thereby protecting dopamine- producing neurons. What's more, the peptide can be easily delivered by daily injections or absorbed into the skin through an adhesive patch.

Based on a short protein derived from DJ-1 itself, the peptide has been shown to freeze in its tracks, reducing problems with mobility and leading to greater protection of neurons and higher dopamine levels in the brain. Dr. Lev says that this method, which has been published in a number of journals including the Journal of Neural Transmission, could be developed as a preventative therapy.

Guarding dopamine levels

As we age, we naturally lose dopamine-producing neurons. Parkinson's patients experience a rapid loss of these neurons from the onset of the disease, leading to much more drastic deficiencies in dopamine than the average person. Preserving dopamine-producing neurons can mean the difference between living life as a Parkinson's patient or aging normally, says Dr. Lev.

The researchers set out to develop a therapy based on the protective effects of DJ-1, using a short peptide based on the healthy version of DJ-1 itself as a vehicle. "We attached the DJ-1-related peptide to another peptide that would allow it to enter the cells, and be carried to the brain," explains Dr. Lev.

In pre-clinical trials, the treatment was tested on mice utilizing well-established toxic and genetic models for Parkinson's disease. From both a behavioral and biochemical standpoint, the mice that received the peptide treatment showed remarkable improvement. Symptoms such as mobility dysfunctions were reduced significantly, and researchers noted the preservation of dopamine-producing and higher in the brain.

Preliminary tests indicate that the peptide is a viable treatment option. Though many have a short life span and degrade quickly, this peptide does not. Additionally, it provides a safe treatment option because peptides are organic to the body itself.

Filling an urgent need

According to Dr. Lev, this peptide could fill a gap in the treatment of Parkinson's disease. "Current treatments are lacking because they can only address symptoms — there is nothing that can change or halt the disease," she says. "Until now, we have lacked tools for neuroprotection."

The researchers also note the potential for the peptides to be used preventatively. In some cases, Parkinson's can be diagnosed before motor symptoms begin with the help of brain scans, explains Dr. Lev, and patients who have a genetic link to the disease might opt for early testing. A preventative therapy could help many potential Parkinson's patients live a normal life.

Explore further: Getting down to the heart of the (gray) matter to treat Parkinson's disease

Related Stories

Getting down to the heart of the (gray) matter to treat Parkinson's disease

April 2, 2012
An agent under consideration for use in PET imaging combats neuronal death to relieve Parkinsonian symptoms in animal models, according to a study published on April 2nd in the Journal of Experimental Medicine.

Scientists find new target for treating symptoms of Parkinson's disease

September 8, 2011
A scientist at the Gladstone Institutes has identified how the lack of a brain chemical known as dopamine can rewire the interaction between two groups of brain cells and lead to symptoms of Parkinson's disease. This discovery ...

Recommended for you

Investigators eye new target for treating movement disorders

January 19, 2018
Blocking a nerve-cell receptor in part of the brain that coordinates movement could improve the treatment of Parkinson's disease, dyskinesia and other movement disorders, researchers at Vanderbilt University have reported.

Parkinson's disease 'jerking' side effect detected by algorithm

January 8, 2018
A mathematical algorithm that can reliably detect dyskinesia, the side effect from Parkinson's treatment that causes involuntary jerking movements and muscle spasms, could hold the key to improving treatment and for patients ...

New brainstem changes identified in Parkinson's disease

January 4, 2018
A pioneering study has found that patients with Parkinson's disease have more errors in the mitochondrial DNA within the brainstem, leading to increased cell death in that area.

Caffeine level in blood may help diagnose people with Parkinson's disease

January 3, 2018
Testing the level of caffeine in the blood may provide a simple way to aid the diagnosis of Parkinson's disease, according to a study published in the January 3, 2018, online issue of Neurology, the medical journal of the ...

Researchers shed light on why exercise slows progression of Parkinson's disease

December 22, 2017
While vigorous exercise on a treadmill has been shown to slow the progression of Parkinson's disease in patients, the molecular reasons behind it have remained a mystery.

Robotic device improves balance and gait in Parkinson's disease patients

December 19, 2017
Some 50,000 people in the U.S. are diagnosed with Parkinson's disease (PD) every year. The American Institute of Neurology estimates there are one million people affected with this neurodegenerative disorder, with 60 years ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.