Real-time monitoring of cellular signalling events

May 2, 2012

(Medical Xpress) -- Phosphorylation is one of the most important and ubiquitous cell regulatory events. EU-funded researchers assessed the dynamic events of intracellular phosphorylation in two model systems with important implications for targeted drug therapies for cancer and inflammatory responses.

Understanding the cellular dynamics of phosphorylation, or the addition of a phosphate unit to a molecule and the associated signalling pathways has important and widespread application in developing drugs and therapies. For example, a certain tumour suppressor gene has more than 18 different phosphorylation sites, enabling quite complex control of activity.

initiated the ‘Quantifying signal transduction’ (QUASI) project in order to develop methods to dynamically monitor protein phosphorylation processes in individual living cells with a goal of targeting signalling pathways with existing drugs or the design of new ones as related to cancer and inflammatory disorders in particular.

Enzymes called kinases are responsible for phosphorylation. Specific enzymes act on specific substrates, sort of like a lock and key. Phosphorylation of protein substrates can turn signal pathways on or off.

Mitogen-activated protein (MAP) kinases are a particularly ancient and well studied family of kinases that participate in numerous cellular-signalling events.

QUASI investigators chose the high osmolarity glycerol (HOG) MAP kinase pathway and the pheromone response pathway in yeast, among the best studied models of signalling pathways, as a means to develop tools enabling quantification in real-time of cell phosphorylation events.

Researchers adapted or developed approaches including isotope labelling, mass spectroscopy, bio-imaging with fluorescent markers, and chemical cross-linking to monitor kinases and key phosphorylation events.

Producing mutations and analogues of kinases and their targets enabled the team to identify specific enzyme substrate reactions and induce specific inhibitions of signalling. Conversely, mathematical models of the HOG and pheromone-signalling pathways based on experimental data represented how the pathways are activated.

Visualisation tools developed to animate the HOG and pheromone pathways should enhance understanding of intracellular signalling and prove useful in predicting drug effects.

The ambitious QUASI project contributed important techniques, data and tools for the study of ubiquitous but quite specific and complex phosphorylation-related cellular-signalling pathways, with important implications for targeted .

Explore further: Map of substrate-kinase interactions may lead to more effective cancer drugs

Related Stories

Map of substrate-kinase interactions may lead to more effective cancer drugs

March 27, 2012
(Medical Xpress) -- Later-stage cancers thrive by finding detours around roadblocks that cancer drugs put in their path, but a Purdue University biochemist is creating maps that will help drugmakers close more routes and ...

Recommended for you

No dye: Cancer patients' gray hair darkened on immune drugs

July 21, 2017
Cancer patients' gray hair unexpectedly turned youthfully dark while taking novel drugs, and it has doctors scratching their heads.

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.