Map of substrate-kinase interactions may lead to more effective cancer drugs

March 27, 2012
W. Andy Tao is mapping the interactions between kinases and their protein targets in an effort to build drugs that better block the reactions that lead to cancer cell formation. Credit: Purdue Agricultural Communication photo/Tom Campbell

(Medical Xpress) -- Later-stage cancers thrive by finding detours around roadblocks that cancer drugs put in their path, but a Purdue University biochemist is creating maps that will help drugmakers close more routes and develop better drugs.

Kinase enzymes deliver phosphates to cell proteins in a process called phosphorylation, switching a on or off. Irregularities in phosphorylation can lead to and are a hallmark of cancer.

Many successful are kinase inhibitors, which block the ability of a kinase to bind with a particular protein on the cell, stopping phosphorylation and the creation of cancer cells.

W. Andy Tao, a Purdue associate professor of biochemistry and member of the Purdue University Center for Cancer Research, said that in later stages of cancers, kinase-inhibiting drugs are ineffective because the kinases adapt, finding new protein targets and forming new cancer cells. He believes that creating maps of all the potential routes for cancer is a key to developing better cancer drugs.

"I would say that 99 percent of these drugs are effective for a few months in late-state cancers, and then the cancers develop resistance," said Tao, whose findings were published online early in the . "In the beginning, the cell cannot adjust and it dies. In later stages, the cells find a way. find a way to survive. You block one pathway, and they find another."

The kinase-protein maps Tao is creating identify kinases and the direct protein targets they phosphorylate. His method weeds out other proteins that are not direct targets, but are later phosphorylated as part of a cascade of reactions that begins when direct are phosphorylated.

Tao compared cells with and without kinases. The phosphoproteins present only when a kinase was present were considered possible targets. Further, the proteins were dephosphorylated, meaning the phosphate groups that had been added by kinases were removed.

The kinase was then re-introduced, and those proteins that accepted phosphate groups from the kinase were deemed direct targets of that kinase. With that information, drugmakers could tailor kinase-inhibiting drugs to ensure that the drug would stop kinases from reaching all potential targets, making the drugs more effective.

"If you understand the network, you can block all the pathways to cure the cancer," Tao said.

Tao's research findings focused on the SYK kinase, which is involved in leukemia and breast cancers. He plans to study other kinases, as well as mutated kinases, to understand whether they have different protein targets.

Tao collaborated with Robert Geahlen, a professor in medicinal chemistry and molecular pharmacology at Purdue. The National Institutes of Health funded the research.

Explore further: Combination therapies for drug-resistant cancers

More information: Sensitive Kinase Assay Linked With Phosphoproteomics for Identifying Direct Kinase Substrates, Proceedings of the National Academy of Sciences.

ABSTRACT
Our understanding of the molecular control of many disease pathologies requires the identification of direct substrates targeted by specific protein kinases. Here we describe an integrated proteomic strategy, termed kinase assay linked with phosphoproteomics, which combines a sensitive kinase reaction with endogenous kinase-dependent phosphoproteomics to identify direct substrates of protein kinases. The unique in vitro kinase reaction is carried out in a highly efficient manner using a pool of peptides derived directly from cellular kinase substrates and then dephosphorylated as substrate candidates. The resulting newly phosphorylated peptides are then isolated and identified by mass spectrometry. A further comparison of these in vitro phosphorylated peptides with phosphopeptides derived from endogenous proteins isolated from cells in which the kinase is either active or inhibited reveals new candidate protein substrates. The kinase assay linked with phosphoproteomics strategy was applied to identify unique substrates of spleen tyrosine kinase (Syk), a protein-tyrosine kinase with duel properties of an oncogene and a tumor suppressor in distinctive cell types. We identified 64 and 23 direct substrates of Syk specific to B cells and breast cancer cells, respectively. Both known and unique substrates, including multiple centrosomal substrates for Syk, were identified, supporting a unique mechanism that Syk negatively affects cell division through its centrosomal kinase activity.

Related Stories

Combination therapies for drug-resistant cancers

October 10, 2011
Some cancers can be effectively treated with drugs inhibiting proteins known as receptor tyrosine kinases, but not those cancers caused by mutations in the KRAS gene. A team of researchers led by Jeffrey Engelman, at Massachusetts ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.