New retrieval method makes studying cancer proteins easier

July 6, 2010, Purdue University

A Purdue University researcher can better retrieve specific proteins needed to study how cancer cells form by using a newly developed technique and synthetic nanopolymer.

W. Andy Tao, an assistant professor of biochemistry, said proteins can be mapped and analyzed to find ways to inhibit the processes that lead to cancer. But first those few proteins must be fished out of a sea of thousands of others.

Tao developed and patented the polymer-based metal-ion affinity capture, or PolyMAC. The synthetic nanopolymer isolates proteins and peptides that have undergone a process called phosphorylation that is highly associated with cancer, and a patented technique allows Tao to retrieve those proteins. Obtaining the information on these proteins is important for studying how to inhibit the processes that lead to cancer.

"You really want to capture these particular proteins, but there are so many different types of proteins around them," said Tao, whose findings were published in the early online version of the journal Molecular & Cellular Proteomics. "The target proteins are a thousand times lower in amount than other proteins. They are difficult to study without the capturing step."

Normal cells grow, divide and eventually die. But continue to grow and do not die. Tao said - in which a type of enzyme called a kinase attaches to and catalyzes a protein on a cell - is thought in many cases to be responsible for creating cancer cells.

Tao's nanopolymer is water-soluble and has titanium ions on its surface, which bind with phosphorylated proteins and contained in a solution. The also has a chemical group attached that is reactive and attached to small beads, which allow Tao to retrieve the polymers.

"Once you put the nanopolymer in the solution, you have to retrieve them, so we put a handle on the polymer so we can grab on to it and fish it out of the solution," Tao said.

In laboratory tests, Tao's nanopolymer and retrieval technique isolated about twice as many proteins that had been phosphorylated by an enzyme highly expressed in certain leukemia cells but absent in metastatic breast cancer cells.

Tao is now seeking opportunities to get the polymer and technique into wider use to aid in the development of new cancer drugs.

"This technique is very useful and can be used widely in research for as well as infectious diseases," Tao said.

Related Stories

Recommended for you

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.

Researcher explains how statistics, neuroscience improve anesthesiology

February 16, 2018
It's intuitive that anesthesia operates in the brain, but the standard protocol among anesthesiologists when monitoring and dosing patients during surgery is to rely on indirect signs of arousal like movement, and changes ...

Team reports progress in pursuit of sickle cell cure

February 16, 2018
Scientists have successfully used gene editing to repair 20 to 40 percent of stem and progenitor cells taken from the peripheral blood of patients with sickle cell disease, according to Rice University bioengineer Gang Bao.

Appetite-controlling molecule could prevent 'rebound' weight gain after dieting

February 15, 2018
Scientists have revealed how mice control their appetite when under stress such as cold temperatures and starvation, according to a new study by Monash University and St Vincent's Institute in Melbourne. The results shed ...

First study of radiation exposure in human gut Organ Chip device offers hope for better radioprotective drugs

February 14, 2018
Chernobyl. Three Mile Island. Fukushima. Accidents at nuclear power plants can potentially cause massive destruction and expose workers and civilians to dangerous levels of radiation that lead to cancerous genetic mutations ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.