Researchers determine 3D structure of adeno-associated virus 9: Aim to boost gene therapy

June 21, 2012, American Society for Microbiology

A team of researchers led by the University of Florida, Gainesville, has determined the precise structure of a virus that has promise as a delivery vehicle for gene therapy. The research appears in the June 2012 issue of the Journal of Virology.

Adeno-associated viruses are benign in humans, and are highly promising in as delivery devices to place healthy into the , in order to compensate for malfunctioning genes. These viruses come in 12 different serotypes (sets of antigens). Adeno-associated virus 9 (AAV9) is currently under development as a for treating , such as spinal muscle atrophy, amyotrophic lateral sclerosis, and Parkinson’s disease.

Mavis Agbandje-McKenna of the University of Florida, Gainesville and her colleagues have determined the precise structure of AAV9, work she says “will help us to understand which parts of the capsid we can alter or modify to make safer, more efficient vectors, and which regions should not be modified as we try to engineer capsids to treat specific diseases.” The capsid is the shell that protects the viral nucleic acid.

The researchers applied X-ray crystallography, the technique that was used to determine DNA’s structure nearly 60 years ago, as well as a complementary, and much newer technique called cryo-electron microscopy and image reconstruction, to determining AAV9’s structure. That work revealed the precise position in space of every atom of the AAV9 capsid. They then compared that structure to other adeno-associated for which structures have been determined, and identified which regions are conserved, and which vary, in comparison to AAV9. They then annotated these regions with respect to function: different parts of the capsid are involved in different functions such as receptor attachment, determining the efficiency of transduction in specific tissues, and antibody recognition.

“Our goal is to use 3D information to inform the design of gene delivery vectors that will have improved efficacy with respect to tissue targeted delivery of therapies, and reduced host immune antibody response recognition,” says Agbandje-McKenna. “The information that we have obtained is guiding further research in our group as well as groups elsewhere who are trying to understand the functions of the capsid, in an effort to improve gene delivery via AAV.” She notes that AAV9 is especially important in these areas because of its ability to cross the blood brain barrier, adding that this makes it particularly useful for treating brain diseases, “for which current therapies are quite limited.”

Explore further: Gene therapy success depends on ability to advance viral delivery vectors to commercialization

More information: M.A. DeMattia, H.-J. Nam, K. Van Vliet, M. Agbandje-McKenna, et al. Structural insight into the unique properties of adeno-associated virus serotype 9. J. Virol. 86:6947-6958.

Related Stories

Gene therapy success depends on ability to advance viral delivery vectors to commercialization

May 18, 2011
Many gene therapy strategies designed to deliver a normal copy of a gene to cells carrying a disease-causing genetic mutation rely on a modified virus to transfer the gene product into affected tissues. One technology platform ...

Can nerve growth factor gene therapy prevent diabetic heart disease?

December 20, 2011
Diabetes is a major risk factor for cardiovascular disease and can reduce blood supply to the heart tissue and damage cardiac cells, resulting in heart failure. New research has investigated if nerve growth factor (NGF) gene ...

Recommended for you

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Epigenetics study helps focus search for autism risk factors

January 16, 2018
Scientists have long tried to pin down the causes of autism spectrum disorder. Recent studies have expanded the search for genetic links from identifying genes toward epigenetics, the study of factors that control gene expression ...

Group recreates DNA of man who died in 1827 despite having no body to work with

January 16, 2018
An international team of researchers led by a group with deCODE Genetics, a biopharmaceutical company in Iceland, has partly recreated the DNA of a man who died in 1827, despite having no body to take tissue samples from. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.