Baby's genome deciphered prenatally from parents' lab tests

June 6, 2012
Blood samples from a pregnant woman and the baby's father can be used to sequence the whole fetal genome. Credit: Leila Gray

Scientists have successfully sequenced the genome of a baby in the womb without tapping its protective fluid sac. This non-invasive approach to obtaining the fetal genome is reported in the June 6 issue of Science Translational Medicine.

Maternal blood sampled at about 18 weeks into the pregnancy and a paternal saliva specimen contained enough information for the scientists to map the fetus' DNA. This method was later repeated for another expectant couple closer to the start of their pregnancy. The researchers checked the accuracy of their genetic predictions using umbilical cord blood collected at birth.

Jacob Kitzman and Matthew Snyder, working in the laboratory of Dr. Jay Shendure, associate professor of genome sciences at the University of Washington, led the study. Kitzman is a National Science Foundation Graduate Research Fellow.

Scientists have long known that a pregnant woman's contains cell-free DNA from her developing fetus. Fetal DNA appears in the mother's plasma a few weeks after conception. It rises during gestation and normally vanishes after the baby arrives. While the concentration varies among individuals, about 10 percent of the cell-free DNA in a pregnant woman's blood plasma comes from her fetus.

Based on this phenomenon, other research labs are designing maternal blood tests for major in the fetus's . The tests are considered a safer substitute for the more invasive sampling of fluid from the uterus, a common procedure in obstetrical practice. These new tests search for just a few genetic disorders or specific . For example, a test targeted for Down syndrome would look for evidence of three copies of .

Kitzman explained what distinguishes his team's latest methods is the ability to assess many and more subtle variations in the fetus' genome, down to a minute, one-letter change in the .

"The improved resolution is like going from being able to see that two books are stuck together to being able to notice one word misspelled on a page," said Kitzman.

With technical advances as well as statistical modeling, the research group overcame several obstacles that had stymied previous efforts to determine fetal genomes. With a preponderance of maternal rather than fetal DNA in plasma samples, a major problem was figuring out which genetic variants had passed from mother to child. The scientists applied a recently developed
technique to resolve the mother's haplotypes, which are groups of genetic variations residing on the same chromosome. From these groupings, the researchers could pick out the parts of the baby's genetic material inherited from each parent with over 98 percent accuracy.

"It was rewarding to apply biostatistics to help solve this problem," said Snyder, who came to from the fields of statistics and economics.

Still, he added, there is more work to be done to improve this technique. The researchers pointed to the need for a more robust, scalable, overarching protocol, as well as ways to lower costs and automate and standardize parts of the process.

A child can have genetic variations not shared with either parent. These brand new or de novo mutations can occur during egg or sperm formation or at or near conception. Because de novo mutations underpin a substantial proportion of dominant genetic disorders, searching for them is critical to comprehensive prenatal genetic diagnosis. The researchers showed that ultra-deep sequencing, computational biology and statistics could locate de novo mutations genome-wide in the growing fetus. They discovered 39 of the baby's 44 de novo mutations while it was a fetus.

The results suggest that a more refined, less costly version of their approach might make prenatal genetic screening vastly more comprehensive. Although technical and analytical difficulties currently exist, the researchers anticipate removal of these hindrances.

"This work opens up the possibility that we will be able to scan the whole genome of the fetus for more than 3,000 single-gene disorders through a single, non-invasive test," said Shendure. Although each specific disorder is rare, in aggregate single-gene diseases, also called Mendelian disorders because of their mode of inheritance, affect about one percent of newborns. The serious nature of these diseases often calls for specialized medical attention.

Shendure mentioned recent advances in detection of de novo mutations which have underscored the important role they play in disorders with more complex origins. These include, but are not limited to, some cases of autism, epilepsy, schizophrenia, or intellectual impairments. However, using genome sequencing to predict and communicate risk to patients would be hard in a clinical setting, due to limited knowledge about multi-gene diseases and their many contributing factors beyond genetics.

"The capacity of genomics to generate data is outstripping our ability to interpret it in ways that are useful to physicians and patients," said Shendure, who is an M.D. /Ph.D medical scientist. "Although the non-invasive prediction of a fetal genome is now technically feasible, its interpretation – even for single-gene Mendelian disorders -- will remain an enormous challenge."

Explore further: Tests that use DNA from mother's blood to determine sex of fetus often effective

More information: "Non-invasive whole genome sequencing of a human fetus," Science Translational Medicine, 2012.

Related Stories

Tests that use DNA from mother's blood to determine sex of fetus often effective

August 9, 2011
As a noninvasive method of determining the sex of a fetus, tests using cell-free fetal DNA obtained from the mother's blood after 7 weeks gestation performed well, while urine-based tests appear to be unreliable, according ...

New prenatal genetic test is much more powerful at detecting fetal abnormalities

February 9, 2012
A nationwide, federally funded study has found that testing a developing fetus' DNA through chromosomal microarray (CMA) provides more information about potential disorders than does the standard method of prenatal testing, ...

New blood test for fetal anomalies being launched

May 7, 2012
(AP) -- A new, noninvasive test to detect certain fetal abnormalities early in pregnancy is being launched and should be widely available next month.

Recommended for you

Association found between abnormal cerebral connectivity and variability in the PPARG gene in developing preterm infants

December 12, 2017
(Medical Xpress)—A team of researchers with King's College London and the National Institute for Health Research Biomedical Research Centre, both in the U.K., has found what they describe as a strong association between ...

Large genetic study links tendency to undervalue future rewards with ADHD, obesity

December 11, 2017
Researchers at University of California San Diego School of Medicine have found a genetic signature for delay discounting—the tendency to undervalue future rewards—that overlaps with attention-deficit/hyperactivity disorder ...

Gene variants identified that may influence sexual orientation in men and boys

December 8, 2017
(Medical Xpress)—A large team of researchers from several institutions in the U.S. and one each from Australia and the U.K. has found two gene variants that appear to be more prevalent in gay men than straight men, adding ...

Disease caused by reduction of most abundant cellular protein identified

December 8, 2017
An international team of scientists and doctors has identified a new disease that results in low levels of a common protein found inside our cells.

Study finds genetic mutation causes 'vicious cycle' in most common form of amyotrophic lateral sclerosis

December 8, 2017
University of Michigan-led research brings scientists one step closer to understanding the development of neurodegenerative disorders such as ALS.

Mutations in neurons accumulate as we age: The process may explain normal cognitive decline and neurodegeneration

December 7, 2017
Scientists have wondered whether somatic (non-inherited) mutations play a role in aging and brain degeneration, but until recently there was no good technology to test this idea. A study published online today in Science, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.