Cell transplantation of lung stem cells has beneficial impact for emphysema

June 4, 2012

When autologous (self-donated) lung-derived mensenchymal stem cells (LMSCs) were transplanted endoscopically into 13 adult female sheep modeled with emphysema, post-transplant evaluation showed evidence of tissue regeneration with increased blood perfusion and extra cellular matrix content. Researchers concluded that their approach could represent a practical alternative to conventional stem cell-based therapy for treating emphysema.

The study is published in (21:1), now freely available on-line at http://www.ingentaconnect.com/content/cog/ct/.

"Mensenchymal stem cells are considered for transplantation because they are readily available, highly proliferative and display multi-lineage potential," said study corresponding author Dr. Edward P. Ingenito of the Brigham and Women's Hospital Division of Pulmonary and . "Although MSCs have been isolated from various - including fat, liver and - cells derived from bone marrow (BM) have therapeutic utility and may be useful in treating advanced , such as emphysema."

However, according to the authors, previous transplantation studies, many of which used an intravenous delivery method, have shown that BM-MSCs have been only marginally successful in treating lung diseases. Further, therapeutic responses in those studies have been limited to animal models of inflammatory lung diseases, such as asthma and .

To try and answer the questions surrounding the utility of BM-MSCs for treating advanced emphysema, a disease characterized by tissue destruction and loss of lung structural integrity, for this study the researchers isolated highly proliferative, mensenchymal cells from adult lung parenchyma (functional tissue) (LMSCs) and used an endoscopic delivery system coupled with a scaffold comprised of natural extracellular matrix components.

"LMSCs display efficient retention in the lung when delivered endobronchially and have regenerative capacity through expression of basement membrane proteins and growth factors," explained Dr. Ingenito.

However, despite the use of autologous cells, only a fraction of the LMSCs delivered to the lungs alveolar compartment appeared to engraft. Cell death likely occurred because of the failure of LMSCs to home to and bind within their niche, perhaps because the niche was modified by inflammation or fibrosis. These cells are attachment-dependent and failure to attach results in cell death."

Their findings did suggest, however, that LMSCs were capable of contributing to lung remodeling leading to documented functional improvement rather than scarring 28 days post transplantation.

"Although the data is from a small number of animals, results show that autologous LMSC therapy using endoscopic delivery and a biocompatible scaffold to promote engraftment is associated with tissue remodeling and increased perfusion, without scarring or inflammation," concluded Dr. Ingenito. "However, questions concerning mechanism of action and pattern of physiological response remain topics for future investigation."

"The impact of mesenchymal stem cells derived from autologous lung tissue demonstrated in this study, suggests that transplantation of these cells could prove to be an important factor in the treatment of emphysema, though further studies are required" said Dr. Amit N. Patel, director of cardiovascular regenerative medicine at the University of Utah and section editor for Cell Transplantation.

Explore further: US researchers identify first human lung stem cell

More information: Ingenito, E. P.; Tsai, L.; Murthy, S.; Tyagi, S.; Mazan, M.; Hoffman, A. Autologous lung-derived mesenchymal stem cell transplantation in experimental emphysema. Cell Transplant. 21(1):175-189; 2012

Related Stories

US researchers identify first human lung stem cell

May 11, 2011
For the first time, researchers at Brigham and Women's Hospital (BWH) have identified a human lung stem cell that is self-renewing and capable of forming and integrating multiple biological structures of the lung including ...

Umbilical cord blood-derived stem cells studied for lupus therapy

April 11, 2011
Human umbilical cord blood-derived mensenchymal stem cells (uMSCs) have been found to offer benefits for treating lupus nephritis (LN) when transplanted into mouse models of systemic lupus erythematosus (SLE). SLE is an ...

Recommended for you

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

As men's weight rises, sperm health may fall

September 20, 2017
(HealthDay)—A widening waistline may make for shrinking numbers of sperm, new research suggests.

New model may help science overcome the brain's fortress-like barrier

September 19, 2017
Scientists have helped provide a way to better understand how to enable drugs to enter the brain and how cancer cells make it past the blood brain barrier.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.