Giant raft of data to help us understand disease

June 28, 2012

Scientists at the Novo Nordisk Foundation Center for Protein Research at the University of Copenhagen have used a new method to assemble a massive catalogue of data on proteins. This gives them unprecedented insight into a process called protein phosphorylation. The research was recently published in the scientific journal Nature Communications.

Postdoc Alicia Lundby, from the Foundation Center for , says: "Phosphorylation changes are really important to our understanding of cancer and other diseases. Although the study of phosphorylation goes back decades, up until now we hadn't been able to measure overall phosphorylation changes in tissue samples. Understanding these phosphorylation changes brings us a step closer to unravelling the mechanisms of disease."

Unravelling the mechanisms of disease

Phosphorylation happens when a phosphate group is added to a protein. Phosphorylation is like a switch that activates proteins, altering their function and changing cell signalling pathways. These signalling pathways are like cellular control panels. Deregulated cell signalling, when the control panel malfunctions, is a common hallmark of disease.

In the , for example, there is great variation in how well the patients respond to different treatments. Most likely as a result of differences in the signalling pathways. The method developed by the team has the potential to make it possible to screen patient to determine the best course of treatment for the individual.

An unprecedented resource

The team of scientists used high-resolution tandem mass spectrometry to generate the catalog of . This research has never been attempted before on this scale – 31,480 phosphorylation sites from 7,280 proteins in 14 different tissue types. From a scientific perspective, it offers an unprecedented resource that is available to biologists online.

"This dataset is like a big atlas that can be used by other scientists to benefit their research," says Alicia Lundby.

For their next project Alicia Lundby and colleagues will be investigating the beta-adrenergic pathway of the heart to gain insight into why the heart suddenly beats faster when adrenalin is released. It is hoped this will improve our understanding of the molecular impact of Beta-blockers, a widely prescribed medication for heart conditions.

Explore further: Real-time monitoring of cellular signalling events

Related Stories

Real-time monitoring of cellular signalling events

May 2, 2012
(Medical Xpress) -- Phosphorylation is one of the most important and ubiquitous cell regulatory events. EU-funded researchers assessed the dynamic events of intracellular phosphorylation in two model systems with important ...

Recommended for you

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

Inhibiting a protein found to reduce progression of Alzheimer's and ALS in mice

August 17, 2017
(Medical Xpress)—A team of researchers with Genetech Inc. and universities in Hamburg and San Francisco has found that inhibiting the creation of a protein leads to a reduction in the progression of Alzheimer's disease ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.