Giant raft of data to help us understand disease

June 28, 2012

Scientists at the Novo Nordisk Foundation Center for Protein Research at the University of Copenhagen have used a new method to assemble a massive catalogue of data on proteins. This gives them unprecedented insight into a process called protein phosphorylation. The research was recently published in the scientific journal Nature Communications.

Postdoc Alicia Lundby, from the Foundation Center for , says: "Phosphorylation changes are really important to our understanding of cancer and other diseases. Although the study of phosphorylation goes back decades, up until now we hadn't been able to measure overall phosphorylation changes in tissue samples. Understanding these phosphorylation changes brings us a step closer to unravelling the mechanisms of disease."

Unravelling the mechanisms of disease

Phosphorylation happens when a phosphate group is added to a protein. Phosphorylation is like a switch that activates proteins, altering their function and changing cell signalling pathways. These signalling pathways are like cellular control panels. Deregulated cell signalling, when the control panel malfunctions, is a common hallmark of disease.

In the , for example, there is great variation in how well the patients respond to different treatments. Most likely as a result of differences in the signalling pathways. The method developed by the team has the potential to make it possible to screen patient to determine the best course of treatment for the individual.

An unprecedented resource

The team of scientists used high-resolution tandem mass spectrometry to generate the catalog of . This research has never been attempted before on this scale – 31,480 phosphorylation sites from 7,280 proteins in 14 different tissue types. From a scientific perspective, it offers an unprecedented resource that is available to biologists online.

"This dataset is like a big atlas that can be used by other scientists to benefit their research," says Alicia Lundby.

For their next project Alicia Lundby and colleagues will be investigating the beta-adrenergic pathway of the heart to gain insight into why the heart suddenly beats faster when adrenalin is released. It is hoped this will improve our understanding of the molecular impact of Beta-blockers, a widely prescribed medication for heart conditions.

Explore further: Real-time monitoring of cellular signalling events

Related Stories

Real-time monitoring of cellular signalling events

May 2, 2012
(Medical Xpress) -- Phosphorylation is one of the most important and ubiquitous cell regulatory events. EU-funded researchers assessed the dynamic events of intracellular phosphorylation in two model systems with important ...

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.