Giant raft of data to help us understand disease

June 28, 2012, University of Copenhagen

Scientists at the Novo Nordisk Foundation Center for Protein Research at the University of Copenhagen have used a new method to assemble a massive catalogue of data on proteins. This gives them unprecedented insight into a process called protein phosphorylation. The research was recently published in the scientific journal Nature Communications.

Postdoc Alicia Lundby, from the Foundation Center for , says: "Phosphorylation changes are really important to our understanding of cancer and other diseases. Although the study of phosphorylation goes back decades, up until now we hadn't been able to measure overall phosphorylation changes in tissue samples. Understanding these phosphorylation changes brings us a step closer to unravelling the mechanisms of disease."

Unravelling the mechanisms of disease

Phosphorylation happens when a phosphate group is added to a protein. Phosphorylation is like a switch that activates proteins, altering their function and changing cell signalling pathways. These signalling pathways are like cellular control panels. Deregulated cell signalling, when the control panel malfunctions, is a common hallmark of disease.

In the , for example, there is great variation in how well the patients respond to different treatments. Most likely as a result of differences in the signalling pathways. The method developed by the team has the potential to make it possible to screen patient to determine the best course of treatment for the individual.

An unprecedented resource

The team of scientists used high-resolution tandem mass spectrometry to generate the catalog of . This research has never been attempted before on this scale – 31,480 phosphorylation sites from 7,280 proteins in 14 different tissue types. From a scientific perspective, it offers an unprecedented resource that is available to biologists online.

"This dataset is like a big atlas that can be used by other scientists to benefit their research," says Alicia Lundby.

For their next project Alicia Lundby and colleagues will be investigating the beta-adrenergic pathway of the heart to gain insight into why the heart suddenly beats faster when adrenalin is released. It is hoped this will improve our understanding of the molecular impact of Beta-blockers, a widely prescribed medication for heart conditions.

Explore further: Real-time monitoring of cellular signalling events

Related Stories

Real-time monitoring of cellular signalling events

May 2, 2012
(Medical Xpress) -- Phosphorylation is one of the most important and ubiquitous cell regulatory events. EU-funded researchers assessed the dynamic events of intracellular phosphorylation in two model systems with important ...

Recommended for you

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.